Abstract
We present the Gonzo dataset: Brain MRI with processed and derivative data from one healthy male human volunteer ("Gonzo”) before and during the 72 hours after intrathecal injection of the contrast agent gadobutrol into the cerebrospinal fluid (CSF) of the spinal canal. The MRI data records include images highlighting the temporal and spatial evolution of the contrast agent in CSF, brain, and adjacent structures. In addition to raw MRI, we provide derivatives that enable numerical simulations of the transport process under study. Derivatives include T1 maps, tracer concentration maps, diffusion tensor maps, and unstructured triangulated volume meshes of the brain geometry. We also provide brain region markers obtained by image segmentation. A regional statistical analysis of the concentration data complements the image data. The presented data can be used to study the transport behavior and the underlying processes of a tracer in the brain. It is intended to contribute to and inspire new studies on the understanding of tracer transport, method development for image analysis, and simulation of brain fluid transport processes.
Similar content being viewed by others
Data availability
All records are available in the Zenodo repository https://zenodo.org/records/1426686753 with https://doi.org/10.5281/zenodo.14266867.
Code availability
The source code for running each step of the described data processing pipeline is split into three repositories. The separation of the source code intends to facilitate the use of the software in future studies involving only parts of the processing pipeline of this dataset.
gonzo: The main repository related to this study. It includes instructions for installing necessary dependencies, running the data processing pipeline, and running scripts for creating plots in this document. The code is publicly available at https://github.com/jorgenriseth/gonzo and as an archived dataset57.
gMRI2FEM: A Python library used for post-processing MRI data. The code is publicly available at https://github.com/jorgenriseth/gMRI2FEM and as an archived dataset58.
dumux-braindiffusion-miniapp: A reuse example code that provides a simulator that uses the provided data set (C++ code, based on the DuMux/DUNE framework59,60,61 and GridFormat62).
The code is publicly available at https://github.com/timokoch/dumux-braindiffusion-miniapp and as an archived dataset63 and may be helpful for users interested in using the provided data in a simulation reuse setup.
References
Mestre, H. et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nature Communications 9, 4878, https://doi.org/10.1038/s41467-018-07318-3 (2018).
Vinje, V. et al. Respiratory influence on cerebrospinal fluid flow - a computational study based on long-term intracranial pressure measurements. Scientific Reports, 9 (1) https://doi.org/10.1038/s41598-019-46055-5. (2019).
van Veluw, S. J. et al. Vasomotion as a driving force for paravascular clearance in the awake mouse brain. Neuron 105(3), 549–561.e5, https://doi.org/10.1016/j.neuron.2019.10.033 (2020).
Bojarskaite, L. et al. Sleep cycle-dependent vascular dynamics in male mice and the predicted effects on perivascular cerebrospinal fluid flow and solute transport. Nature Communications 14(1) https://doi.org/10.1038/s41467-023-36643-5. (2023).
Iliff, J. J. et al. A paravascular pathway facilitates csf flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Science Translational Medicine 4(147) https://doi.org/10.1126/scitranslmed.3003748 (2012).
Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342(6156), 373–377, https://doi.org/10.1126/science.1241224 (2013).
Bohr, T. et al. The glymphatic system: Current understanding and modeling. iScience 25(9), 104987, https://doi.org/10.1016/j.isci.2022.104987 (2022).
Kedarasetti, R. T., Drew, P. J. & Costanzo, F Arterial pulsations drive oscillatory flow of CSF but not directional pumping. Scientific Reports 10(1), https://doi.org/10.1038/s41598-020-66887-w (2020).
Romanó, F., Suresh, V., Galie, P. A. & Grotberg, J. B., Peristaltic flow in the glymphatic system. Scientific Reports 10(1), https://doi.org/10.1038/s41598-020-77787-4 (2020).
Sharp, M. K. Pulsatile cerebral paraarterial flow by peristalsis, pressure and directional resistance. Fluids and Barriers of the CNS 20(1), https://doi.org/10.1186/s12987-023-00445-0 (2023).
Daversin-Catty, C., Vinje, V., Mardal, K.-A. & Rognes, M. E. The mechanisms behind perivascular fluid flow. PLOS ONE 15(12), e0244442, https://doi.org/10.1371/journal.pone.0244442 (2020).
Asgari, M., de Zélicourt, D. & Kurtcuoglu, V. Glymphatic solute transport does not require bulk flow. Scientific Reports 6(1) https://doi.org/10.1038/srep38635 (2016).
Smith, A. J. & Verkman, A. S. The “glymphatic” mechanism for solute clearance in alzheimer’s disease: game changer or unproven speculation? The FASEB Journal 32(2), 543–551, https://doi.org/10.1096/fj.201700999 (2018).
Poulain, A., Riseth, J. & Vinje, V. Multi-compartmental model of glymphatic clearance of solutes in brain tissue. PLOS ONE 18(3), e0280501, https://doi.org/10.1371/journal.pone.0280501 (2023).
Tully, B. & Ventikos, Y. Cerebral water transport using multiple-network poroelastic theory: Application to normal pressure hydrocephalus. Journal of Fluid Mechanics 667, 188–215, https://doi.org/10.1017/s0022112010004428 (2010).
Guo, L., Vardakis, J. C., Chou, D. & Ventikos, Y. A multiple-network poroelastic model for biological systems and application to subject-specific modelling of cerebral fluid transport. International Journal of Engineering Science 147, 103204, https://doi.org/10.1016/j.ijengsci.2019.103204 (2020).
Hladky, S. B. & Barrand, M. A. The glymphatic hypothesis: the theory and the evidence. Fluids and Barriers of the CNS 19(1) https://doi.org/10.1186/s12987-021-00282-z (2022).
Turgut Tali, E. et al. Intrathecal gadolinium (gadopentetate dimeglumine) enhanced magnetic resonance myelography and cisternography: Results of a multicenter study. Investigative Radiology 37(3), 152–159, https://doi.org/10.1097/00004424-200203000-00008 (2002).
Vanopdenbosch, L. J., Dedeken, P., Casselman, J. W. & Vlaminck, S. A. P. A. MRI with intrathecal gadolinium to detect a csf leak: a prospective open-label cohort study. Journal of Neurology, Neurosurgery & Psychiatry 82(4), 456–458, https://doi.org/10.1136/jnnp.2009.180752 (2010).
Algin, O. & Turkbey, B. Intrathecal gadolinium-enhanced mr cisternography: A comprehensive review. American Journal of Neuroradiology 34(1), 14–22, https://doi.org/10.3174/ajnr.a2899 (2012).
Eide, PerKristian & Ringstad, G. MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain. Acta Radiologica Open 4(11), 205846011560963, https://doi.org/10.1177/2058460115609635 (2015).
Ringstad, G., Are Sirirud Vatnehol, S. & Eide, P. K. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain 140(10), 2691–2705, https://doi.org/10.1093/brain/awx191 (2017).
Ringstad, G. et al. Brain-wide glymphatic enhancement and clearance in humans assessed with MRI. JCI Insight3(13) https://doi.org/10.1172/jci.insight.121537 (2018).
Eide, P. K. & Ringstad, G. Delayed clearance of cerebrospinal fluid tracer from entorhinal cortex in idiopathic normal pressure hydrocephalus: A glymphatic magnetic resonance imaging study. Journal of Cerebral Blood Flow & Metabolism 39(7), 1355–1368, https://doi.org/10.1177/0271678x18760974 (2018).
Edeklev, C. S. et al. Intrathecal use of gadobutrol for glymphatic MR imaging: Prospective safety study of 100 patients. American Journal of Neuroradiology 40(8), 1257–1264, https://doi.org/10.3174/ajnr.a6136 (2019).
Watts, R., Steinklein, J. M., Waldman, L., Zhou, X. & Filippi, C. G. Measuring glymphatic flow in man using quantitative contrast-enhanced MRI. American Journal of Neuroradiology https://doi.org/10.3174/ajnr.a5931 (2019)
Eide, P. K., Vinje, V., Pripp, A. H., Mardal, K.-A. & Ringstad, G. Sleep deprivation impairs molecular clearance from the human brain. Brain 144(3), 863–874, https://doi.org/10.1093/brain/awaa443 (2021).
Eide, P. K. et al. Intrathecal contrast-enhanced magnetic resonance imaging of cerebrospinal fluid dynamics and glymphatic enhancement in idiopathic normal pressure hydrocephalus. Frontiers in Neurology 13, https://doi.org/10.3389/fneur.2022.857328 (2022).
van Osch, M. J. P. et al. Human brain clearance imaging: Pathways taken by magnetic resonance imaging contrast agents after administration in cerebrospinal fluid and blood. NMR in Biomedicine 37(9), https://doi.org/10.1002/nbm.5159 (2024).
Halvorsen, M. et al. Off-label intrathecal use of gadobutrol: safety study and comparison of administration protocols. Neuroradiology 63(1), 51–61, https://doi.org/10.1007/s00234-020-02519-4 (2020).
Patel, M., Atyani, A., Salameh, J.-P., McInnes, M. & Chakraborty, S. Safety of intrathecal administration of gadolinium-based contrast agents: A systematic review and meta-analysis. Radiology 297(1), 75–83, https://doi.org/10.1148/radiol.2020191373 (2020).
Ringstad, G. & Eide, P. K. Safety of intrathecal gadolinium-based contrast agents and benefit versus risk. Radiology 299(1), E223–E224, https://doi.org/10.1148/radiol.2021203351 (2021).
Eide, P. K., Pripp, A. H., Ringstad, G. & Valnes, L. M. Impaired glymphatic function in idiopathic intracranial hypertension. Brain Communications 3(2), https://doi.org/10.1093/braincomms/fcab043 (2021).
Eide, P. K. et al. Clinical application of intrathecal gadobutrol for assessment of cerebrospinal fluid tracer clearance to blood. JCI insight 6(9), e147063, https://doi.org/10.1172/jci.insight.147063 (2021).
Storås, T. H. et al. t2-weighted t1 mapping and automated segmentation of csf: Assessment of solute gradients in the healthy brain. Journal of Magnetic Resonance Imaging https://doi.org/10.1002/jmri.70169 (2025).
Li, X., Morgan, P. S., Ashburner, J., Smith, J. & Rorden, C. The first step for neuroimaging data analysis: DICOM to NIfTI conversion. Journal of Neuroscience Methods 264, 47–56, https://doi.org/10.1016/j.jneumeth.2016.03.001 (2016).
Look, D. C. & Locker, D. R. Time Saving in Measurement of NMR and EPR Relaxation Times. Review of Scientific Instruments 41(2), 250–251, https://doi.org/10.1063/1.1684482 (1970).
Slavin, G. S. On the use of the “Look-Locker correction” for calculating T1 values from MOLLI. Journal of Cardiovascular Magnetic Resonance 16(Suppl 1), P55, https://doi.org/10.1186/1532-429X-16-S1-P55 (2014).
Virtanen, P. et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2 (2020).
in den Kleef, J. J. E. & Cuppen, J. J. M. RLSQ: T1 T2, and ρ calculations, combining ratios and least squares. Magnetic Resonance in Medicine 5(6), 513–524, https://doi.org/10.1002/mrm.1910050602 (1987).
Yen, J.-C., Chang, F.-J. & Chang, S. A new criterion for automatic multilevel thresholding. IEEE Transactions on Image Processing 4(3), 370–378, https://doi.org/10.1109/83.366472 (1995).
Xie, L. et al. Automated segmentation of medial temporal lobe subregions on in vivo T1-weighted MRI in early stages of Alzheimer’s disease. Human Brain Mapping 40(12), 3431–3451, https://doi.org/10.1002/hbm.24607 (2019).
Rohrer, M., Bauer, H., Mintorovitch, J., Requardt, M. & Weinmann, H.-J. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Investigative Radiology 40(11), 715–724, https://doi.org/10.1097/01.rli.0000184756.66360.d3 (2005).
Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. Fsl. NeuroImage 62(2), 782–790, https://doi.org/10.1016/j.neuroimage.2011.09.015 (2012).
Andersson, J. L. R., Skare, S. & Ashburner, J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 20(2), 870–888, https://doi.org/10.1016/s1053-8119(03)00336-7 (2003).
Smith, S. M. et al. Advances in functional and structural mr image analysis and implementation as fsl. NeuroImage 23, S208–S219, https://doi.org/10.1016/j.neuroimage.2004.07.051 (2004).
Andersson, J. L. R. & Sotiropoulos, S. N. An integrated approach to correction for off-resonance effects and subject movement in diffusion mr imaging. NeuroImage 125, 1063–1078, https://doi.org/10.1016/j.neuroimage.2015.10.019 (2016).
Mardal, K.-A., Rognes, M. E., Thompson, T. B. & Valnes, L. M. Mathematical Modeling of the Human Brain: From Magnetic Resonance Images to Finite Element Simulation. Springer International Publishing https://doi.org/10.1007/978-3-030-95136-8 (2022).
Zapf, B., Valnes, L. M., Mardal, K.-A. & Zikatanov, L. Quantifying cerebrospinal fluid tracer concentration in the brain. In Dokken, J., Mardal, K.-A., Rognes, L. M., E Valnes, M. & Vinje, V., editors, MRI2FEM II: from magnetic resonance images to computational brain mechanics. Springer, (2025).
Fischl, B. FreeSurfer. NeuroImage 62(2), 774–781, https://doi.org/10.1016/j.neuroimage.2012.01.021 (2012).
Henschel, L. et al. Fastsurfer-a fast and accurate deep learning based neuroimaging pipeline. NeuroImage 219, 117012, https://doi.org/10.1016/j.neuroimage.2020.117012 (2020).
Sullivan, C. & Kaszynski, A. Pyvista: 3d plotting and mesh analysis through a streamlined interface for the visualization toolkit (vtk). Journal of Open Source Software 4(37), 1450, https://doi.org/10.21105/joss.01450 (2019).
Riseth, J. et al. The gonzo dataset: Human brain mri data of csf tracer evolution over 72h for data-integrated simulations (2025). https://doi.org/10.5281/zenodo.14266867.
Stalder, A. F., Elverfeldt, D. V., Hennig, J., Paul, D. & Markl, M. Variable echo time imaging: Signal characteristics of 1-m gadobutrol contrast agent at 1.5 and 3t. Magnetic Resonance in Medicine 59(1), 113–123 (2007).
Johanson, C. E. et al. Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Research 5(1) https://doi.org/10.1186/1743-8454-5-10 (2008).
Shen, Y. et al. T1 relaxivities of gadolinium-based magnetic resonance contrast agents in human whole blood at 1.5, 3, and 7 t. Investigative Radiology 50(5), 330–338, https://doi.org/10.1097/rli.0000000000000132 (2015).
Riseth, J. & Koch, T. Gonzo processing pipeline, v1.0.0, https://doi.org/10.5281/zenodo.17760932 (2025).
Riseth, J. gmri2fem, v0.2.8 https://doi.org/10.5281/zenodo.16677013 (2025).
Koch, T. et al. Dumux 3 - an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling. Computers & Mathematics with Applications https://doi.org/10.1016/j.camwa.2020.02.012 (2021).
Bastian, P. et al. The Dune framework: Basic concepts and recent developments. Computers & Mathematics with Applications 81, 75–112, https://doi.org/10.1016/j.camwa.2020.06.007 (2021).
Alkämper, M., Dedner, A., Klöfkorn, R. & Nolte, M. The dune-alugrid module. Archive of Numerical Software 4, https://doi.org/10.11588/ANS.2016.1.23252 (2016).
Gläser, D., Koch, T. & Flemisch, B. GridFormat: header-only C++-library for grid file I/O. Journal of Open Source software 8(90), 5778, https://doi.org/10.21105/joss.05778 (2023).
Koch, T. & Riseth, J. Software for reuse example in: MRI data of CSF tracer evolution over 72h in human brain for data-integrated simulations (2025).
Chen, L., Bernstein, M, Huston, J. & Fain, S. Measurements of T1 relaxation times at 3.0 T: implications for clinical MRA. In Proceedings of the 9th Annual Meeting of ISMRM, Glasgow, Scotland, volume 1391 (2001).
Lu, H. et al. Routine clinical brain MRI sequences for use at 3.0 Tesla. Journal of Magnetic Resonance Imaging 22(1), 13–22, https://doi.org/10.1002/jmri.20356 (2005).
Shin, W., Gu, H. & Yang, Y. Fast high-resolution T1 mapping using inversion-recovery look-locker echo-planar imaging at steady state: Optimization for accuracy and reliability. Magnetic Resonance in Medicine 61(4), 899–906, https://doi.org/10.1002/mrm.21836 (2009).
Dieringer, M. A. et al. Rapid Parametric Mapping of the Longitudinal Relaxation Time T1 Using Two-Dimensional Variable Flip Angle Magnetic Resonance Imaging at 1.5 Tesla, 3 Tesla, and 7 Tesla. PLOS ONE 9(3), e91318, https://doi.org/10.1371/journal.pone.0091318 (2014).
Wright, P. J. et al. Water proton T1 measurements in brain tissue at 7, 3, and 1.5T using IR-EPI IR-TSE, and MPRAGE: results and optimization. Magnetic Resonance Materials in Physics, Biology and Medicine 21(1), 121, https://doi.org/10.1007/s10334-008-0104-8 (2008).
Helenius, J. et al. Diffusion-weighted MR imaging in normal human brains in various age groups. American journal of neuroradiology 23(2), 194–199 (2002).
Vinje, V. et al. Human brain solute transport quantified by glymphatic MRI-informed biophysics during sleep and sleep deprivation. Fluids and Barriers of the CNS 20(1) (2023).
Moraru, L. & Dimitrievici, L. Apparent diffusion coefficient of the normal human brain for various experimental conditions. In AIP Conference Proceedings, volume 1792, page 040005, https://doi.org/10.1063/1.4972383 (2017).
Mukherjee, P., Berman, J. I., Chung, S. W., Hess, C. P. & Henry, R. G. Diffusion tensor MR imaging and fiber tractography: Theoretic underpinnings. American Journal of Neuroradiology 29(4), 632–641, https://doi.org/10.3174/ajnr.a1051 (2008).
Sener, R. N. Diffusion MRI: apparent diffusion coefficient (ADC) values in the normal brain and a classification of brain disorders based on ADC values. Computerized Medical Imaging and Graphics 25(4), 299–326, https://doi.org/10.1016/s0895-6111(00)00083-5 (2001).
Acknowledgements
The authors thank Geir Ringstadt and Per-Kristian Eide for spearheading the development of glymphatic MRI and for fruitful discussions. The authors are grateful to the anonymous volunteer for participating in the study and giving informed consent to open publication, allowing us to disseminate this unique data set. S.L. and K.N. acknowledge funding from the South Eastern Norway Health Authority (Helse Sør-Øst) within project 2022022 (Clearance pathways in Parkinson’s disease) and the Norwegian Health Association (Nasjonalforeningen for folkehelsen) within projects 25598 and 28398. T.K. acknowledges funding from the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska-Curie Actions Grant agreement No 801133 (Scientia fellows II). T.K. and K.A.M. acknowledge funding by the Research Council of Norway, project 301013 (Alzheimer’s physics). T.K., J.N.R and K.A.M. acknowledge funding by the European Research Council under grant 101141807 (aCleanBrain). K.A.M. and L.M.V acknowledges the funding from the “Computational Hydrology project” a strategic Sustainability initiative at the Faculty of Natural Sciences, UiO. K.A.M. acknowledges funding from the Stiftelsen Kristian Gerhard Jebsen via the K. G. Jebsen Centre for Brain Fluid Research and the national infrastructure for computational science in Norway, Sigma2, via grant NN9279K. The work of L.T.Z. was supported in part by U.S. NSF DMS-220829 and the U.S.-Norway Fulbright Foundation.
Author information
Authors and Affiliations
Contributions
J.R.: Data curation, Formal analysis, Investigation, Methodology, Software, Validation, Visualization, Writing - original draft; T.K.: Formal analysis, Investigation, Software, Methodology, Supervision, Validation, Visualization, Writing - original draft; S.L.: Data curation, Methodology, Investigation, Writing - review & editing; T.H.S.: Data curation, Formal analysis, Methodology, Writing - review & editing; L.M.V.: Software, Methodology, Writing - review & editing; L.Z.: Conceptualization, Investigation, Writing - review & editing; K.N.: Conceptualization, Funding acquisition, Methodology, Project Administration, Supervision, Writing - review & editing; K.A.M.: Conceptualization, Methodology, Funding acquisition, Project Administration, Supervision, Writing - original draft.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Riseth, J.N., Koch, T., Lian, S.L. et al. Human brain MRI data of intrathecally injected tracer evolution over 72 hours for data-integrated simulations. Sci Data (2026). https://doi.org/10.1038/s41597-026-06564-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41597-026-06564-1


