Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Data
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific data
  3. data descriptors
  4. article
Chromosome-level genome assembly and annotation of two Asian bumble bees
Download PDF
Download PDF
  • Data Descriptor
  • Open access
  • Published: 09 January 2026

Chromosome-level genome assembly and annotation of two Asian bumble bees

  • Jixiang Cui1,
  • Ye Xu2,
  • Jiyao Liu1,
  • Xinyang Zhang1,
  • Zhaoyang Chen1,
  • Wanhu Yang1,
  • Jin Ge3 nAff8,
  • Cheng Sun  ORCID: orcid.org/0000-0001-7476-92244,
  • Yifan Zhai5,
  • Zhimin Chang6,
  • Lixia Tian7,
  • Yuange Duan  ORCID: orcid.org/0000-0003-2311-98591,
  • Fan Song1,
  • Wanzhi Cai1,
  • Hu Li1 &
  • …
  • Li Tian  ORCID: orcid.org/0000-0002-7288-96761 

Scientific Data , Article number:  (2026) Cite this article

  • 1309 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Comparative genomics
  • Entomology

Abstract

The bumblebee Bombus patagiatus Nylander, 1848 and Bombus lantschouensis Vogt, 1908 (Hymenoptera: Apidae) are ecologically important bumble bee species native to East Asia, with considerable value for agricultural pollination and domestication. Despite their ecological and economic relevance, the lack of high-quality genomic resources has hindered in-depth investigations into their genetic architecture and evolutionary adaptations. Here, we present chromosome-level genome assemblies for both species, generated using a combination of PacBio HiFi long-read sequencing, Illumina short-read resequencing, and Hi-C scaffolding. The assembled genomes span 240.28 Mb (B. patagiatus) and 241.30 Mb (B. lantschouensis), with 94.38% and 94.00% of sequences anchored to 18 chromosomes, respectively. Genome annotation identified 17,351 and 16,023 protein-coding genes in B. patagiatus and B. lantschouensis, along with comprehensive repetitive element characterization. Both assemblies exhibit exceptional completeness, with BUSCO scores exceeding 99%, confirming their high quality and reliability. These genomic resources provide a critical foundation for future research on bumble bee evolution, population genetics, and the molecular basis of domestication traits.

Similar content being viewed by others

Chromosome-level genome assembly of Anastoechus asiaticus (Diptera: Bombyliidae)

Article Open access 03 December 2025

A chromosome-level genome assembly of the flat mite Brevipalpus obovatus

Article Open access 12 November 2025

Chromosomal-level genome assembly of solitary bee pollinator Osmia excavata Alfken (Hymenoptera: Megachilidae)

Article Open access 29 May 2025

Data availability

All data generated in this study have been deposited in public repositories and are publicly available. The chromosome-level genome assemblies of Bombus patagiatus and Bombus lantschouensis are available in NCBI GenBank under the accession numbers JBSRNJ00000000037 and JBSRNK00000000038, respectively. Raw sequencing data, including PacBio HiFi, Hi-C, Illumina short reads, and transcriptome data, have been deposited in the Genome Sequence Archive (GSA) under the accession number CRA02799942. The corresponding genome annotation files are publicly available in the Figshare repository53. The assembled genomes are also archived in the Genome Warehouse (GWH)51,52.

Code availability

All analyses in this study were conducted using established bioinformatics tools available in the public domain. We exclusively employed published software packages, with each program’s specific version, parameters, and implementation details comprehensively described in the respective Methods sections. No custom scripts or in-house developed software were utilized during any phase of the genome assembly, annotation, or analysis pipeline.

References

  1. Huang, J. & An, J. Species diversity, pollination application and strategy for conservation of the bumblebees of China. Biodivers. Sci. 26, 486–497, https://doi.org/10.17520/biods.2018068 (2018).

    Google Scholar 

  2. Yuan, Y., Smagghe, G., Chen, X., Long, J. & Chang, Z. The research hotspots and frontiers of bumblebees during 1999–2024: a bibliometric analysis. J. Appl. Entomol. 149, 536–548, https://doi.org/10.1111/jen.13400 (2025).

    Google Scholar 

  3. Cameron, S. A. & Sadd, B. M. Global trends in bumble bee health. Annu. Rev. Entomol. 65, 209–232, https://doi.org/10.1146/annurev-ento-011118-111847 (2020).

    Google Scholar 

  4. Yu, W. B., Li, D. Z. & Wang, H. Highly efficient pollination by bumblebees ensures seed production in Pedicularis lachnoglossa (Orobanchaceae), an early‐flowering Himalayan plant. J. Syst. Evol. 50, 218–226, https://doi.org/10.1111/j.1759-6831.2012.00180.x (2012).

    Google Scholar 

  5. Velthuis, H. H. W. & van Doorn, A. A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37, 421–451, https://doi.org/10.1051/apido:2006019 (2006).

    Google Scholar 

  6. Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229, https://doi.org/10.1038/nature20588 (2016).

    Google Scholar 

  7. Williams, P. H., Cameron, S. A., Hines, H. M., Cederberg, B. & Rasmont, P. A simplified subgeneric classification of the bumblebees (genus Bombus). Apidologie 39, 46–74, https://doi.org/10.1051/apido:2007052 (2008).

    Google Scholar 

  8. Cameron, S. A., Hines, H. M. & Williams, P. H. A comprehensive phylogeny of the bumble bees (Bombus): bumble bee phylogeny. Biol. J. Linnean Soc. 91, 161–188, https://doi.org/10.1111/j.1095-8312.2007.00784.x (2007).

    Google Scholar 

  9. Hines, H. M. Historical biogeography, divergence times, and diversification patterns of bumble bees (Hymenoptera: Apidae: Bombus). Syst. Biol. 57, 58–75, https://doi.org/10.1080/10635150801898912 (2008).

    Google Scholar 

  10. Williams, P. H. Not just cryptic, but a barcode bush: PTP re-analysis of global data for the bumblebee subgenus Bombus s. str. Supports additional species (Apidae, genus Bombus). J. Nat. Hist. 55, 271–282, https://doi.org/10.1080/00222933.2021.1900444 (2021).

    Google Scholar 

  11. An, J. et al. The bumblebees of North China (Apidae, Bombus Latreille). Zootaxa 3830, 001–089, https://doi.org/10.11646/zootaxa.3830.1.1 (2014).

    Google Scholar 

  12. Tokoro, S., Yoneda, M., Kawate Kunitake, Y. & Goka, K. Geographic variation in mitochondrial DNA of Bombus ignitus (Hymenoptera: Apidae). Appl. Entomol. Zoolog. 45, 77–87, https://doi.org/10.1303/aez.2010.77 (2010).

    Google Scholar 

  13. Sadd, B. M. et al. The genomes of two key bumblebee species with primitive eusocial organization. Genome Biol. 16, 76, https://doi.org/10.1186/s13059-015-0623-3 (2015).

    Google Scholar 

  14. Sun, C. et al. Genus-wide characterization of bumblebee genomes provides insights into their evolution and variation in ecological and behavioral traits. Mol. Biol. Evol. 38, 486–501, https://doi.org/10.1093/molbev/msaa240 (2021).

    Google Scholar 

  15. Koch, J. B. U., Sim, S. B., Scheffler, B., Geib, S. M. & Smith, T. A. Chromosome-scale genome assembly of the rusty patched bumble bee,bombus affinis (cresson) (hymenoptera: apidae), an endangered north american pollinator. G3. Genes Genm. Genet. 13, jkad119, https://doi.org/10.1093/g3journal/jkad119 (2023).

    Google Scholar 

  16. Wang, Y. Identification and characteristics of odorant receptors in bumblebee. Bombus lantschouensis. Scientia Agric. Sin. 50, 1904–1913, https://doi.org/10.3864/j.issn.0578-1752.2017.10.015 (2017).

    Google Scholar 

  17. Hebert, P. D. N., Cywinska, A., Ball, S. L. & DeWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B. 270, 313–321, https://doi.org/10.1098/rspb.2002.2218 (2003).

    Google Scholar 

  18. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079, https://doi.org/10.1093/bioinformatics/btp352 (2009).

    Google Scholar 

  19. Chen, S., Zhou, Y., Chen, Y. & Gu, J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890, https://doi.org/10.1093/bioinformatics/bty560 (2018).

    Google Scholar 

  20. Ranallo-Benavidez, T. R., Jaron, K. S. & Schatz, M. C. Genomescope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 11, 1432, https://doi.org/10.1038/s41467-020-14998-3 (2020).

    Google Scholar 

  21. Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770, https://doi.org/10.1093/bioinformatics/btr011 (2011).

    Google Scholar 

  22. Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158, https://doi.org/10.1038/s41592-019-0669-3 (2020).

    Google Scholar 

  23. Guan, D. et al. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics 36, 2896–2898, https://doi.org/10.1093/bioinformatics/btaa025 (2020).

    Google Scholar 

  24. Li, H. New strategies to improve minimap2 alignment accuracy. Bioinformatics 37, 4572–4574, https://doi.org/10.1093/bioinformatics/btab705 (2021).

    Google Scholar 

  25. Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9, e112963, https://doi.org/10.1371/journal.pone.0112963 (2014).

    Google Scholar 

  26. Li, H. & Durbin, R. Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics 25, 1754–1760, https://doi.org/10.1093/bioinformatics/btp324 (2009).

    Google Scholar 

  27. Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95, https://doi.org/10.1126/science.aal3327 (2017).

    Google Scholar 

  28. Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98, https://doi.org/10.1016/j.cels.2016.07.002 (2016).

    Google Scholar 

  29. Marçais, G. et al. Mummer4: a fast and versatile genome alignment system. PLoS Comput. Biol. 14, e1005944, https://doi.org/10.1371/journal.pcbi.1005944 (2018).

    Google Scholar 

  30. Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl. Acad. Sci. USA. 117, 9451–9457, https://doi.org/10.1073/pnas.1921046117 (2020).

    Google Scholar 

  31. Holt, C. & Yandell, M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics 12, 491, https://doi.org/10.1186/1471-2105-12-491 (2011).

    Google Scholar 

  32. Mei, Y. et al. InsectBase 2.0: a comprehensive gene resource for insects. Nucleic. Acids. Res. 50, D1040–D1045, https://doi.org/10.1093/nar/gkab1090 (2022).

    Google Scholar 

  33. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with hisat2 and hisat-genotype. Nat. Biotechnol. 37, 907–915, https://doi.org/10.1038/s41587-019-0201-4 (2019).

    Google Scholar 

  34. Kovaka, S. et al. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome. Biol. 20, 278, https://doi.org/10.1186/s13059-019-1910-1 (2019).

    Google Scholar 

  35. Wang, Y. et al. shinyCircos-v2.0: leveraging the creation of Circos plot with enhanced usability and advanced features. iMeta 2, e109, https://doi.org/10.1002/imt2.109 (2023).

    Google Scholar 

  36. Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829, https://doi.org/10.1093/molbev/msab293 (2021).

    Google Scholar 

  37. Cui, J. et al. Bombus patagiatus isolate Bpat_Field-collected male 1, whole genome shotgun sequencing project. GenBank https://identifiers.org/ncbi/insdc:JBSRNJ000000000.1 (2025).

  38. Cui, J. et al. Bombus lantschouensis isolate Blan_Field-collected male 1, whole genome shotgun sequencing project. GenBank https://identifiers.org/ncbi/insdc:JBSRNK000000000.1 (2025).

  39. CNCB-NGDC Members and Partners. Database resources of the national genomics data center, China national center for bioinformation in 2025. Nucleic. Acids. Res. 53, D30–D44, https://doi.org/10.1093/nar/gkae978 (2025).

    Google Scholar 

  40. NGDC/CNCB https://ngdc.cncb.ac.cn/bioproject/browse/PRJCA043262 (2025).

  41. Chen, T. et al. The genome sequence archive family: toward explosive data growth and diverse data types. Genom. Proteom. Bioinform. 19, 578–583, https://doi.org/10.1016/j.gpb.2021.08.001 (2021).

    Google Scholar 

  42. National Genomics Data Center Genome Sequence Archive https://ngdc.cncb.ac.cn/gsa/browse/CRA027999 (2025).

  43. National Genomics Data Center Genome Sequence Archive https://ngdc.cncb.ac.cn/gsa/browse/CRA027999/CRR1999938 (2025).

  44. National Genomics Data Center Genome Sequence Archive https://ngdc.cncb.ac.cn/gsa/browse/CRA027999/CRR1999939 (2025).

  45. National Genomics Data Center Genome Sequence Archive https://ngdc.cncb.ac.cn/gsa/browse/CRA027999/CRR1999940 (2025).

  46. National Genomics Data Center Genome Sequence Archive https://ngdc.cncb.ac.cn/gsa/browse/CRA027999/CRR1999941 (2025).

  47. National Genomics Data Center Genome Sequence Archive https://ngdc.cncb.ac.cn/gsa/browse/CRA027999/CRR1999942 (2025).

  48. National Genomics Data Center Genome Sequence Archive https://ngdc.cncb.ac.cn/gsa/browse/CRA027999/CRR1999943 (2025).

  49. National Genomics Data Center Genome Sequence Archive https://ngdc.cncb.ac.cn/gsa/browse/CRA027999/CRR1999944 (2025).

  50. Ma, Y. et al. The updated genome warehouse: enhancing data value, security, and usability to address data expansion. Genom. Proteom. Bioinform. 23, qzaf10, https://doi.org/10.1093/gpbjnl/qzaf010 (2025).

    Google Scholar 

  51. NGDC/CNCB https://ngdc.cncb.ac.cn/gwh/Assembly/98333/show (2025).

  52. NGDC/CNCB https://ngdc.cncb.ac.cn/gwh/Assembly/98334/show (2025).

  53. Cui, J. et al. Chromosome-level genome assembly and annotation of two Asian bumble bees, figshare. Dataset https://doi.org/10.6084/m9.figshare.29608145 (2025).

    Google Scholar 

  54. Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome. Biol. 21, 245, https://doi.org/10.1186/s13059-020-02134-9 (2020).

    Google Scholar 

  55. Simão, F. A., Waterhouse, R. M., Loannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212, https://doi.org/10.1093/bioinformatics/btv351 (2015).

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Ling Ma from China Agricultural University for assisting data analyses; This work was supported by National Natural Science Foundation of China (32370487), China National Tobacco Corporation of Science and Technology Major Projects (110202201018 [LS-02]), the project of the Northeast Asia Biodiversity Research Center (2572022DS09) and the 2115 Talent Development Program of China Agricultural University.

Author information

Author notes
  1. Jin Ge

    Present address: Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China

Authors and Affiliations

  1. Department of Entomology, State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China

    Jixiang Cui, Jiyao Liu, Xinyang Zhang, Zhaoyang Chen, Wanhu Yang, Yuange Duan, Fan Song, Wanzhi Cai, Hu Li & Li Tian

  2. International Research Center of Cross-Border Pest Management in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Urumqi, China

    Ye Xu

  3. State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China

    Jin Ge

  4. College of Life Sciences, Capital Normal University, Beijing, China

    Cheng Sun

  5. Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China

    Yifan Zhai

  6. Institute of Entomology, Provincial Special Key Laboratory for Developing and Utilizing of Insect Resources, Guizhou University, Guiyang, China

    Zhimin Chang

  7. Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China

    Lixia Tian

Authors
  1. Jixiang Cui
    View author publications

    Search author on:PubMed Google Scholar

  2. Ye Xu
    View author publications

    Search author on:PubMed Google Scholar

  3. Jiyao Liu
    View author publications

    Search author on:PubMed Google Scholar

  4. Xinyang Zhang
    View author publications

    Search author on:PubMed Google Scholar

  5. Zhaoyang Chen
    View author publications

    Search author on:PubMed Google Scholar

  6. Wanhu Yang
    View author publications

    Search author on:PubMed Google Scholar

  7. Jin Ge
    View author publications

    Search author on:PubMed Google Scholar

  8. Cheng Sun
    View author publications

    Search author on:PubMed Google Scholar

  9. Yifan Zhai
    View author publications

    Search author on:PubMed Google Scholar

  10. Zhimin Chang
    View author publications

    Search author on:PubMed Google Scholar

  11. Lixia Tian
    View author publications

    Search author on:PubMed Google Scholar

  12. Yuange Duan
    View author publications

    Search author on:PubMed Google Scholar

  13. Fan Song
    View author publications

    Search author on:PubMed Google Scholar

  14. Wanzhi Cai
    View author publications

    Search author on:PubMed Google Scholar

  15. Hu Li
    View author publications

    Search author on:PubMed Google Scholar

  16. Li Tian
    View author publications

    Search author on:PubMed Google Scholar

Contributions

W.C., H.L. and L.T. contributed to the research design. J.C., W.Y., J.G. and L.T. collected the samples. J.C. and X.Z. performed the experiments. J.C., Z.C. and L.T. took photos of specimens. J.C., Y.X. and C.S. analyzed the data. J.C. and L.T. wrote the draft manuscript. J.C., J.L., L.T., Y.Z., Z.C., Y.D., F.S. and L.T. revised the manuscript. All authors contributed to this manuscript and agreed to the current version.

Corresponding authors

Correspondence to Hu Li or Li Tian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Xu, Y., Liu, J. et al. Chromosome-level genome assembly and annotation of two Asian bumble bees. Sci Data (2026). https://doi.org/10.1038/s41597-026-06568-x

Download citation

  • Received: 29 July 2025

  • Accepted: 06 January 2026

  • Published: 09 January 2026

  • DOI: https://doi.org/10.1038/s41597-026-06568-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims and scope
  • Editors & Editorial Board
  • Journal Metrics
  • Policies
  • Open Access Fees and Funding
  • Calls for Papers
  • Contact

Publish with us

  • Submission Guidelines
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Data (Sci Data)

ISSN 2052-4463 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing