Abstract
The bumblebee Bombus patagiatus Nylander, 1848 and Bombus lantschouensis Vogt, 1908 (Hymenoptera: Apidae) are ecologically important bumble bee species native to East Asia, with considerable value for agricultural pollination and domestication. Despite their ecological and economic relevance, the lack of high-quality genomic resources has hindered in-depth investigations into their genetic architecture and evolutionary adaptations. Here, we present chromosome-level genome assemblies for both species, generated using a combination of PacBio HiFi long-read sequencing, Illumina short-read resequencing, and Hi-C scaffolding. The assembled genomes span 240.28 Mb (B. patagiatus) and 241.30 Mb (B. lantschouensis), with 94.38% and 94.00% of sequences anchored to 18 chromosomes, respectively. Genome annotation identified 17,351 and 16,023 protein-coding genes in B. patagiatus and B. lantschouensis, along with comprehensive repetitive element characterization. Both assemblies exhibit exceptional completeness, with BUSCO scores exceeding 99%, confirming their high quality and reliability. These genomic resources provide a critical foundation for future research on bumble bee evolution, population genetics, and the molecular basis of domestication traits.
Similar content being viewed by others
Data availability
All data generated in this study have been deposited in public repositories and are publicly available. The chromosome-level genome assemblies of Bombus patagiatus and Bombus lantschouensis are available in NCBI GenBank under the accession numbers JBSRNJ00000000037 and JBSRNK00000000038, respectively. Raw sequencing data, including PacBio HiFi, Hi-C, Illumina short reads, and transcriptome data, have been deposited in the Genome Sequence Archive (GSA) under the accession number CRA02799942. The corresponding genome annotation files are publicly available in the Figshare repository53. The assembled genomes are also archived in the Genome Warehouse (GWH)51,52.
Code availability
All analyses in this study were conducted using established bioinformatics tools available in the public domain. We exclusively employed published software packages, with each program’s specific version, parameters, and implementation details comprehensively described in the respective Methods sections. No custom scripts or in-house developed software were utilized during any phase of the genome assembly, annotation, or analysis pipeline.
References
Huang, J. & An, J. Species diversity, pollination application and strategy for conservation of the bumblebees of China. Biodivers. Sci. 26, 486–497, https://doi.org/10.17520/biods.2018068 (2018).
Yuan, Y., Smagghe, G., Chen, X., Long, J. & Chang, Z. The research hotspots and frontiers of bumblebees during 1999–2024: a bibliometric analysis. J. Appl. Entomol. 149, 536–548, https://doi.org/10.1111/jen.13400 (2025).
Cameron, S. A. & Sadd, B. M. Global trends in bumble bee health. Annu. Rev. Entomol. 65, 209–232, https://doi.org/10.1146/annurev-ento-011118-111847 (2020).
Yu, W. B., Li, D. Z. & Wang, H. Highly efficient pollination by bumblebees ensures seed production in Pedicularis lachnoglossa (Orobanchaceae), an early‐flowering Himalayan plant. J. Syst. Evol. 50, 218–226, https://doi.org/10.1111/j.1759-6831.2012.00180.x (2012).
Velthuis, H. H. W. & van Doorn, A. A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37, 421–451, https://doi.org/10.1051/apido:2006019 (2006).
Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229, https://doi.org/10.1038/nature20588 (2016).
Williams, P. H., Cameron, S. A., Hines, H. M., Cederberg, B. & Rasmont, P. A simplified subgeneric classification of the bumblebees (genus Bombus). Apidologie 39, 46–74, https://doi.org/10.1051/apido:2007052 (2008).
Cameron, S. A., Hines, H. M. & Williams, P. H. A comprehensive phylogeny of the bumble bees (Bombus): bumble bee phylogeny. Biol. J. Linnean Soc. 91, 161–188, https://doi.org/10.1111/j.1095-8312.2007.00784.x (2007).
Hines, H. M. Historical biogeography, divergence times, and diversification patterns of bumble bees (Hymenoptera: Apidae: Bombus). Syst. Biol. 57, 58–75, https://doi.org/10.1080/10635150801898912 (2008).
Williams, P. H. Not just cryptic, but a barcode bush: PTP re-analysis of global data for the bumblebee subgenus Bombus s. str. Supports additional species (Apidae, genus Bombus). J. Nat. Hist. 55, 271–282, https://doi.org/10.1080/00222933.2021.1900444 (2021).
An, J. et al. The bumblebees of North China (Apidae, Bombus Latreille). Zootaxa 3830, 001–089, https://doi.org/10.11646/zootaxa.3830.1.1 (2014).
Tokoro, S., Yoneda, M., Kawate Kunitake, Y. & Goka, K. Geographic variation in mitochondrial DNA of Bombus ignitus (Hymenoptera: Apidae). Appl. Entomol. Zoolog. 45, 77–87, https://doi.org/10.1303/aez.2010.77 (2010).
Sadd, B. M. et al. The genomes of two key bumblebee species with primitive eusocial organization. Genome Biol. 16, 76, https://doi.org/10.1186/s13059-015-0623-3 (2015).
Sun, C. et al. Genus-wide characterization of bumblebee genomes provides insights into their evolution and variation in ecological and behavioral traits. Mol. Biol. Evol. 38, 486–501, https://doi.org/10.1093/molbev/msaa240 (2021).
Koch, J. B. U., Sim, S. B., Scheffler, B., Geib, S. M. & Smith, T. A. Chromosome-scale genome assembly of the rusty patched bumble bee,bombus affinis (cresson) (hymenoptera: apidae), an endangered north american pollinator. G3. Genes Genm. Genet. 13, jkad119, https://doi.org/10.1093/g3journal/jkad119 (2023).
Wang, Y. Identification and characteristics of odorant receptors in bumblebee. Bombus lantschouensis. Scientia Agric. Sin. 50, 1904–1913, https://doi.org/10.3864/j.issn.0578-1752.2017.10.015 (2017).
Hebert, P. D. N., Cywinska, A., Ball, S. L. & DeWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B. 270, 313–321, https://doi.org/10.1098/rspb.2002.2218 (2003).
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079, https://doi.org/10.1093/bioinformatics/btp352 (2009).
Chen, S., Zhou, Y., Chen, Y. & Gu, J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890, https://doi.org/10.1093/bioinformatics/bty560 (2018).
Ranallo-Benavidez, T. R., Jaron, K. S. & Schatz, M. C. Genomescope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 11, 1432, https://doi.org/10.1038/s41467-020-14998-3 (2020).
Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770, https://doi.org/10.1093/bioinformatics/btr011 (2011).
Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158, https://doi.org/10.1038/s41592-019-0669-3 (2020).
Guan, D. et al. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics 36, 2896–2898, https://doi.org/10.1093/bioinformatics/btaa025 (2020).
Li, H. New strategies to improve minimap2 alignment accuracy. Bioinformatics 37, 4572–4574, https://doi.org/10.1093/bioinformatics/btab705 (2021).
Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9, e112963, https://doi.org/10.1371/journal.pone.0112963 (2014).
Li, H. & Durbin, R. Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics 25, 1754–1760, https://doi.org/10.1093/bioinformatics/btp324 (2009).
Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95, https://doi.org/10.1126/science.aal3327 (2017).
Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98, https://doi.org/10.1016/j.cels.2016.07.002 (2016).
Marçais, G. et al. Mummer4: a fast and versatile genome alignment system. PLoS Comput. Biol. 14, e1005944, https://doi.org/10.1371/journal.pcbi.1005944 (2018).
Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl. Acad. Sci. USA. 117, 9451–9457, https://doi.org/10.1073/pnas.1921046117 (2020).
Holt, C. & Yandell, M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics 12, 491, https://doi.org/10.1186/1471-2105-12-491 (2011).
Mei, Y. et al. InsectBase 2.0: a comprehensive gene resource for insects. Nucleic. Acids. Res. 50, D1040–D1045, https://doi.org/10.1093/nar/gkab1090 (2022).
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with hisat2 and hisat-genotype. Nat. Biotechnol. 37, 907–915, https://doi.org/10.1038/s41587-019-0201-4 (2019).
Kovaka, S. et al. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome. Biol. 20, 278, https://doi.org/10.1186/s13059-019-1910-1 (2019).
Wang, Y. et al. shinyCircos-v2.0: leveraging the creation of Circos plot with enhanced usability and advanced features. iMeta 2, e109, https://doi.org/10.1002/imt2.109 (2023).
Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829, https://doi.org/10.1093/molbev/msab293 (2021).
Cui, J. et al. Bombus patagiatus isolate Bpat_Field-collected male 1, whole genome shotgun sequencing project. GenBank https://identifiers.org/ncbi/insdc:JBSRNJ000000000.1 (2025).
Cui, J. et al. Bombus lantschouensis isolate Blan_Field-collected male 1, whole genome shotgun sequencing project. GenBank https://identifiers.org/ncbi/insdc:JBSRNK000000000.1 (2025).
CNCB-NGDC Members and Partners. Database resources of the national genomics data center, China national center for bioinformation in 2025. Nucleic. Acids. Res. 53, D30–D44, https://doi.org/10.1093/nar/gkae978 (2025).
NGDC/CNCB https://ngdc.cncb.ac.cn/bioproject/browse/PRJCA043262 (2025).
Chen, T. et al. The genome sequence archive family: toward explosive data growth and diverse data types. Genom. Proteom. Bioinform. 19, 578–583, https://doi.org/10.1016/j.gpb.2021.08.001 (2021).
National Genomics Data Center Genome Sequence Archive https://ngdc.cncb.ac.cn/gsa/browse/CRA027999 (2025).
National Genomics Data Center Genome Sequence Archive https://ngdc.cncb.ac.cn/gsa/browse/CRA027999/CRR1999938 (2025).
National Genomics Data Center Genome Sequence Archive https://ngdc.cncb.ac.cn/gsa/browse/CRA027999/CRR1999939 (2025).
National Genomics Data Center Genome Sequence Archive https://ngdc.cncb.ac.cn/gsa/browse/CRA027999/CRR1999940 (2025).
National Genomics Data Center Genome Sequence Archive https://ngdc.cncb.ac.cn/gsa/browse/CRA027999/CRR1999941 (2025).
National Genomics Data Center Genome Sequence Archive https://ngdc.cncb.ac.cn/gsa/browse/CRA027999/CRR1999942 (2025).
National Genomics Data Center Genome Sequence Archive https://ngdc.cncb.ac.cn/gsa/browse/CRA027999/CRR1999943 (2025).
National Genomics Data Center Genome Sequence Archive https://ngdc.cncb.ac.cn/gsa/browse/CRA027999/CRR1999944 (2025).
Ma, Y. et al. The updated genome warehouse: enhancing data value, security, and usability to address data expansion. Genom. Proteom. Bioinform. 23, qzaf10, https://doi.org/10.1093/gpbjnl/qzaf010 (2025).
NGDC/CNCB https://ngdc.cncb.ac.cn/gwh/Assembly/98333/show (2025).
NGDC/CNCB https://ngdc.cncb.ac.cn/gwh/Assembly/98334/show (2025).
Cui, J. et al. Chromosome-level genome assembly and annotation of two Asian bumble bees, figshare. Dataset https://doi.org/10.6084/m9.figshare.29608145 (2025).
Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome. Biol. 21, 245, https://doi.org/10.1186/s13059-020-02134-9 (2020).
Simão, F. A., Waterhouse, R. M., Loannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212, https://doi.org/10.1093/bioinformatics/btv351 (2015).
Acknowledgements
We thank Dr. Ling Ma from China Agricultural University for assisting data analyses; This work was supported by National Natural Science Foundation of China (32370487), China National Tobacco Corporation of Science and Technology Major Projects (110202201018 [LS-02]), the project of the Northeast Asia Biodiversity Research Center (2572022DS09) and the 2115 Talent Development Program of China Agricultural University.
Author information
Authors and Affiliations
Contributions
W.C., H.L. and L.T. contributed to the research design. J.C., W.Y., J.G. and L.T. collected the samples. J.C. and X.Z. performed the experiments. J.C., Z.C. and L.T. took photos of specimens. J.C., Y.X. and C.S. analyzed the data. J.C. and L.T. wrote the draft manuscript. J.C., J.L., L.T., Y.Z., Z.C., Y.D., F.S. and L.T. revised the manuscript. All authors contributed to this manuscript and agreed to the current version.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Cui, J., Xu, Y., Liu, J. et al. Chromosome-level genome assembly and annotation of two Asian bumble bees. Sci Data (2026). https://doi.org/10.1038/s41597-026-06568-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41597-026-06568-x


