Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Data
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific data
  3. data descriptors
  4. article
FlareDB: A Database of Significant Flares in Solar Cycles 24 and 25 with SDO/HMI and SDO/AIA Observations
Download PDF
Download PDF
  • Data Descriptor
  • Open access
  • Published: 24 January 2026

FlareDB: A Database of Significant Flares in Solar Cycles 24 and 25 with SDO/HMI and SDO/AIA Observations

  • Nian Liu  ORCID: orcid.org/0000-0002-6018-37991,2,
  • Yasser Abduallah1,3,
  • Tanmay Sunil Kapure1,3,
  • Qin Li1,2,
  • Haimin Wang  ORCID: orcid.org/0000-0002-5233-565X1,2 &
  • …
  • Jason T. L. Wang1,3 

Scientific Data , Article number:  (2026) Cite this article

  • 521 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Solar physics

Abstract

We present FlareDB, a database that provides comprehensive magnetic field information, ultraviolet/extreme ultraviolet (UV/EUV) emissions, and white light continuum images for solar active regions (ARs) associated with 151 significant flares from May 2010 to May 2025. The data, sourced from the Solar Dynamics Observatory (SDO) via the Joint Science Operations Center (JSOC), were processed with SunPy and stored in standardized JSOC FITS format. FlareDB includes all M5.0 and larger flares within 50° of the solar disk center. Key features include (1) Atmospheric Imaging Assembly (AIA) AR patches in Helioprojective Cartesian(HPC) and Lambert Cylindrical Equal-Area (CEA) projections, aligned with corresponding HMI magnetogram patches; (2) quick-look movies with uniform value ranges that ensure consistent visualization, maintain data uniformity, and enhance readiness for machine learning studies; (3) a supplementary web interface that allows the entire dataset of a flare to be downloaded for large flare analysis. One of FlareDB’s primary objectives is to support scientists in predicting and understanding the onset of solar eruptions, including flares and coronal mass ejections. The data set is machine-learning ready for this purpose.

Similar content being viewed by others

Operational prediction of solar flares using a transformer-based framework

Article Open access 22 August 2023

Correlation between active regions’ spectra at high radio frequencies and solar flare occurrences

Article Open access 08 January 2026

Magnetic activity and spectral behavior of RS CVn binary system (IM Pegasi) in the ultraviolet

Article Open access 12 December 2025

Data availability

The dataset is publicly available at the Zenodo repository: https://doi.org/10.5281/zenodo.1679053851.

Code availability

The data processing scripts, including data downloading, completeness checks, cropping and alignment of images, and movie creation, are available in the github repository: https://github.com/Reasopprime/njit-flaredb/.

References

  1. Gonzalez, W. D., Tsurutani, B. T. & Clúa de Gonzalez, A. L. Interplanetary origin of geomagnetic storms. Space Science Reviews 88, 529–562, https://doi.org/10.1023/A:1005160129098 (1999).

    Google Scholar 

  2. Schrijver, C. J. & Siscoe, G. L., Heliophysics: Evolving Solar Activity and the Climates of Space and Earth. Cambridge University Press, Cambridge, UK. (2010).

  3. Vemareddy, P. & Mishra, W. A full study on the Sun-Earth connection of an Earth-directed CME magnetic flux rope. The Astrophysical Journal 814(1), 59, https://doi.org/10.1088/0004-637X/814/1/59 (2015).

    Google Scholar 

  4. Temmer, M. et al. Flare-CME characteristics from Sun to Earth combining observations and modeling. In. EGU General Assembly Conference Abstracts 19, 1942 (2017).

    Google Scholar 

  5. Pulkkinen, A., Bernabeu, E., Eichner, J., Viljanen, A. & Ngwira, C. Regional-scale high-latitude extreme geoelectric fields pertaining to geomagnetically induced currents. Earth, Planets and Space 67, 93, https://doi.org/10.1186/s40623-015-0255-6 (2015).

    Google Scholar 

  6. Bateman, G., MHD Instabilities. OSTI.GOV, United States. https://www.osti.gov/biblio/6503774 (1978).

  7. Amari, T., Luciani, J. F., Aly, J. J. & Tagger, M. Very fast opening of a three-dimensional twisted magnetic flux tube. The Astrophysical Journal 466(1), L39–L42, https://doi.org/10.1086/310158 (1996).

    Google Scholar 

  8. Antiochos, S. K., DeVore, C. R. & Klimchuk, J. A. A model for solar coronal mass ejections. The Astrophysical Journal 510(1), 485–493, https://doi.org/10.1086/306563 (1999).

    Google Scholar 

  9. Moore, R. L., Sterling, A. C., Hudson, H. S. & Lemen, J. R. Onset of the magnetic explosion in solar flares and coronal mass ejections. The Astrophysical Journal 552(2), 833–848, https://doi.org/10.1086/320559 (2001).

    Google Scholar 

  10. Tokman, M. & Bellan, P. M. Three-dimensional model of the structure and evolution of coronal mass ejections. The Astrophysical Journal 567(2), 1202–1210, https://doi.org/10.1086/338699 (2002).

    Google Scholar 

  11. MacNeice, P. et al. A numerical study of the breakout model for coronal mass ejection initiation. The Astrophysical Journal 614(2), 1028–1041, https://doi.org/10.1086/423887 (2004).

    Google Scholar 

  12. Török, T., Kliem, B. & Titov, V. S. Ideal kink instability of a magnetic loop equilibrium. Astronomy & Astrophysics 413(3), L27–L30, https://doi.org/10.1051/0004-6361:20031691 (2004).

    Google Scholar 

  13. Kliem, B. & Török, T. Torus instability. Physical Review Letters 96(25), 255002, https://doi.org/10.1103/physrevlett.96.255002 (2006).

    Google Scholar 

  14. Ishiguro, N. & Kusano, K. Double arc instability in the solar corona. The Astrophysical Journal 843(2), 101, https://doi.org/10.3847/1538-4357/aa799b (2017).

    Google Scholar 

  15. Green, L. M., Török, T., Vršnak, B., Manchester, W. & Veronig, A. The origin, early evolution and predictability of solar eruptions. Space Science Reviews 214(1), 46, https://doi.org/10.1007/s11214-017-0462-5 (2018).

    Google Scholar 

  16. Georgoulis, M. K. & Rust, D. M. Quantitative forecasting of major solar flares. The Astrophysical Journal Letters 661(1), L109–L112, https://doi.org/10.1086/518718 (2007).

    Google Scholar 

  17. Gopalswamy, N., Xie, H., Akiyama, S., Mäkelä, P. A. & Yashiro, S. Major solar eruptions and high-energy particle events during solar cycle 24. Earth, Planets and Space 66, 104, https://doi.org/10.1186/1880-5981-66-104 (2014).

    Google Scholar 

  18. Barczynski, K. et al. A statistical comparison of EUV brightenings observed by SO/EUI with simulated brightenings in nonpotential simulations. Solar Physics 297(10), 141, https://doi.org/10.1007/s11207-022-02074-6 (2022).

    Google Scholar 

  19. Zhang, H. et al. Solar flare index prediction using SDO/HMI vector magnetic data products with statistical and machine-learning methods. The Astrophysical Journal Supplement Series 263(2), 28, https://doi.org/10.3847/1538-4365/ac9b17 (2022).

    Google Scholar 

  20. Karimov, K. et al. 3D magnetic free energy and flaring activity using 83 major solar flares. The Astrophysical Journal Letters 965(1), L5, https://doi.org/10.3847/2041-8213/ad3548 (2024).

    Google Scholar 

  21. Mackay, D. H. & Yeates, A. R. The Sun’s global photospheric and coronal magnetic fields: observations and models. Living Reviews in Solar Physics 9(1), 6, https://doi.org/10.12942/lrsp-2012-6 (2012).

    Google Scholar 

  22. Toriumi, S. & Wang, H. Flare-productive active regions. Living Reviews in Solar Physics 16(1), 3, https://doi.org/10.1007/s41116-019-0019-7 (2019).

    Google Scholar 

  23. Liu, N., Jing, J., Xu, Y. & Wang, H. Multi-instrument comparative study of temperature, number density, and emission measure during the precursor phase of a solar flare. The Astrophysical Journal 930(2), 154, https://doi.org/10.3847/1538-4357/ac6425 (2022).

    Google Scholar 

  24. Camporeale, E. The challenge of machine learning in space weather: nowcasting and forecasting. Space Weather 17(8), 1166–1207, https://doi.org/10.1029/2018SW002061 (2019).

    Google Scholar 

  25. Liu, H., Liu, C., Wang, J. T. L. & Wang, H. Predicting solar flares using a long short-term memory network. The Astrophysical Journal 877(2), 121, https://doi.org/10.3847/1538-4357/ab1b3c (2019).

    Google Scholar 

  26. Liu, H., Liu, C., Wang, J. T. L. & Wang, H. Predicting coronal mass ejections using SDO/HMI vector magnetic data products and recurrent neural networks. The Astrophysical Journal 890(1), 12, https://doi.org/10.3847/1538-4357/ab6850 (2020).

    Google Scholar 

  27. Alobaid, K. A. et al. Estimating coronal mass ejection mass and kinetic energy by fusion of multiple deep-learning models. The Astrophysical Journal Letters 958(2), L34, https://doi.org/10.3847/2041-8213/ad0c4a (2023).

    Google Scholar 

  28. Jiang, H. et al. Generating photospheric vector magnetograms of solar active regions for SOHO/MDI using SDO/HMI and BBSO data with deep learning. Solar Physics 298(7), 87, https://doi.org/10.1007/s11207-023-02180-z (2023).

    Google Scholar 

  29. Pesnell, W. D., Thompson, B. J. & Chamberlin, P. C. The Solar Dynamics Observatory (SDO). Solar Physics 275(1), 3–15, https://doi.org/10.1007/s11207-011-9841-3 (2012).

    Google Scholar 

  30. Scherrer, P. H.et al. The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). In The Solar Dynamics Observatory (pp. 207–227). Springer US, New York, NY. https://doi.org/10.1007/978-1-4614-3673-7_10 (2012).

  31. Lemen, J. R. et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Physics 275(1), 17–40, https://doi.org/10.1007/s11207-011-9776-8 (2012).

    Google Scholar 

  32. Bobra, M. G. et al. The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: SHARPs - Space-Weather HMI Active Region Patches. Solar Physics 289(9), 3549–3578, https://doi.org/10.1007/s11207-014-0529-3 (2014).

    Google Scholar 

  33. Thompson, W. T. Coordinate systems for solar image data. Astronomy and Astrophysics 449(2), 791–803, https://doi.org/10.1051/0004-6361:20054262 (2006).

    Google Scholar 

  34. Scherrer, P. H., Bogart, R. S. & Bush, R. I. The Solar Oscillations Investigation - Michelson Doppler Imager. Solar Physics 162(1-2), 129–188, https://doi.org/10.1007/BF00733429 (1995).

    Google Scholar 

  35. Bertello, L. & Marble, A. R. SOLIS/VSM polar magnetic field data. arXiv preprint arXiv:1507.07976. https://arxiv.org/abs/1507.07976 (2015).

  36. Keller, C. U., Harvey, J. W. & Giampapa, M. S., (2003). SOLIS: an innovative suite of synoptic solar instruments. In Innovative Telescopes and Instrumentation for Solar Astrophysics, edited by S. L. Keil & S. V. Avakyan, Vol. 4853, pp. 194-204. International Society for Optics and Photonics (SPIE). https://doi.org/10.1117/12.460373 (2003).

  37. Wheatland, M. S., Sturrock, P. A. & Roumeliotis, G. An optimization approach to reconstructing force-free fields. The Astrophysical Journal 540(2), 1150–1155, https://doi.org/10.1086/309355 (2000).

    Google Scholar 

  38. Wiegelmann, T. Optimization code with weighting function for the reconstruction of coronal magnetic fields. Solar Physics 219(1), 87–108, https://doi.org/10.1023/b:sola.0000021799.39465.36 (2004).

    Google Scholar 

  39. Wiegelmann, T., Inhester, B. & Sakurai, T. Preprocessing of vector magnetograph data for a nonlinear force-free magnetic field reconstruction. Solar Physics 233(2), 215–232, https://doi.org/10.1007/s11207-006-2092-z (2006).

    Google Scholar 

  40. Hu, Q. & Dasgupta, B., (2006). A new approach to modeling non-force-free coronal magnetic field. Geophysical Research Letters, 331. https://doi.org/10.1029/2006GL026952

  41. Hu, Q. & Dasgupta, B. An improved approach to non-force-free coronal magnetic field extrapolation. Solar Physics 247(1), 87–101, https://doi.org/10.1007/s11207-007-9090-7 (2008).

    Google Scholar 

  42. Hu, Q., Dasgupta, B., Choudhary, D. P. & Büchner, J. A practical approach to coronal magnetic field extrapolation based on the principle of minimum dissipation rate. The Astrophysical Journal 679(1), 848–853, https://doi.org/10.1086/587639 (2008).

    Google Scholar 

  43. Prasad, A., Bhattacharyya, R. & Kumar, S. Magnetohydrodynamic modeling of solar coronal dynamics with an initial non-force-free magnetic field. The Astrophysical Journal 840(1), 37, https://doi.org/10.3847/1538-4357/aa6c58 (2017).

    Google Scholar 

  44. Cheung, M. C. M. et al. Thermal diagnostics with the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory: a validated method for differential emission measure inversions. The Astrophysical Journal 807(2), 143, https://doi.org/10.1088/0004-637X/807/2/143 (2015).

    Google Scholar 

  45. Barnes, W. T. et al. The SunPy project: open source development and status of the version 1.0 core package. The Astrophysical Journal 890(1), 68, https://doi.org/10.3847/1538-4357/ab4f7a (2020).

    Google Scholar 

  46. Thomas, R. J., Starr, R. & Crannell, C. J. Expressions to determine temperatures and emission measures for solar X-ray events from GOES measurements. Solar Physics 95(2), 323–329, https://doi.org/10.1007/BF00152409 (1985).

    Google Scholar 

  47. White, S. M., Thomas, R. J. & Schwartz, R. A. Updated expressions for determining temperatures and emission measures from GOES soft X-ray measurements. Solar Physics 227(2), 231–248, https://doi.org/10.1007/s11207-005-2445-z (2005).

    Google Scholar 

  48. Metcalf, T. R. Resolving the 180-degree ambiguity in vector magnetic field measurements: the ’minimum’ energy solution. Solar Physics 155(2), 235–242, https://doi.org/10.1007/BF00680593 (1994).

    Google Scholar 

  49. Leka, K. D. et al. Resolving the 180° ambiguity in solar vector magnetic field data: evaluating the effects of noise, spatial resolution, and method assumptions. Solar Physics 260(1), 83–108, https://doi.org/10.1007/s11207-009-9440-8 (2009).

    Google Scholar 

  50. Hoeksema, J. T. et al. The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: overview and performance. Solar Physics 289(9), 3483–3530, https://doi.org/10.1007/s11207-014-0516-8 (2014).

    Google Scholar 

  51. Liu, N.et al. FlareDB: a database of significant flares in solar cycles 24 and 25 with SDO/HMI and SDO/AIA observations—quick-look movies. Zenodo, version 2025-05-31. https://doi.org/10.5281/zenodo.16790538 (2025).

Download references

Acknowledgements

N.L., Y.A., Q.L., H.W. and J.W. were funded by the National Science Foundation (NSF) under the EarthCube program in the Division of Atmospheric & Geospace Sciences (grant number: AGS-1927578). In addition, H.W. and J.W. acknowledge support from NSF grants AGS-2149748, AGS-2228996, OAC-2320147, OAC-2504860 and NASA grants 80NSSC24K0548, 80NSSC24K0843 and 80NSSC24M0174. We thank the SDO team at Stanford University for data processing and maintenance of the JSOC site. We also thank Rui Zhang for initial data downloads and Dr. Yang Liu for verifying the completeness of the data.

Author information

Authors and Affiliations

  1. Institute for Space Weather Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102-1982, USA

    Nian Liu, Yasser Abduallah, Tanmay Sunil Kapure, Qin Li, Haimin Wang & Jason T. L. Wang

  2. Center for Solar-Terrestrial Research, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102-1982, USA

    Nian Liu, Qin Li & Haimin Wang

  3. College of Computing, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102-1982, USA

    Yasser Abduallah, Tanmay Sunil Kapure & Jason T. L. Wang

Authors
  1. Nian Liu
    View author publications

    Search author on:PubMed Google Scholar

  2. Yasser Abduallah
    View author publications

    Search author on:PubMed Google Scholar

  3. Tanmay Sunil Kapure
    View author publications

    Search author on:PubMed Google Scholar

  4. Qin Li
    View author publications

    Search author on:PubMed Google Scholar

  5. Haimin Wang
    View author publications

    Search author on:PubMed Google Scholar

  6. Jason T. L. Wang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

N.L. carried out data downloading, processing, analysis, and validation for HMI and AIA images and wrote the manuscript. Y.A. contributed to the implementation of the online database and its user interface. N.L., T.K. and Q.L. performed manual quality checks for all quick look movies. H.W. and J.W. provided advice and supervised the project. All authors reviewed the manuscript.

Corresponding author

Correspondence to Nian Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Abduallah, Y., Kapure, T.S. et al. FlareDB: A Database of Significant Flares in Solar Cycles 24 and 25 with SDO/HMI and SDO/AIA Observations. Sci Data (2026). https://doi.org/10.1038/s41597-026-06607-7

Download citation

  • Received: 11 December 2024

  • Accepted: 09 January 2026

  • Published: 24 January 2026

  • DOI: https://doi.org/10.1038/s41597-026-06607-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims and scope
  • Editors & Editorial Board
  • Journal Metrics
  • Policies
  • Open Access Fees and Funding
  • Calls for Papers
  • Contact

Publish with us

  • Submission Guidelines
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Data (Sci Data)

ISSN 2052-4463 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing