Abstract
We present FlareDB, a database that provides comprehensive magnetic field information, ultraviolet/extreme ultraviolet (UV/EUV) emissions, and white light continuum images for solar active regions (ARs) associated with 151 significant flares from May 2010 to May 2025. The data, sourced from the Solar Dynamics Observatory (SDO) via the Joint Science Operations Center (JSOC), were processed with SunPy and stored in standardized JSOC FITS format. FlareDB includes all M5.0 and larger flares within 50° of the solar disk center. Key features include (1) Atmospheric Imaging Assembly (AIA) AR patches in Helioprojective Cartesian(HPC) and Lambert Cylindrical Equal-Area (CEA) projections, aligned with corresponding HMI magnetogram patches; (2) quick-look movies with uniform value ranges that ensure consistent visualization, maintain data uniformity, and enhance readiness for machine learning studies; (3) a supplementary web interface that allows the entire dataset of a flare to be downloaded for large flare analysis. One of FlareDB’s primary objectives is to support scientists in predicting and understanding the onset of solar eruptions, including flares and coronal mass ejections. The data set is machine-learning ready for this purpose.
Similar content being viewed by others
Data availability
The dataset is publicly available at the Zenodo repository: https://doi.org/10.5281/zenodo.1679053851.
Code availability
The data processing scripts, including data downloading, completeness checks, cropping and alignment of images, and movie creation, are available in the github repository: https://github.com/Reasopprime/njit-flaredb/.
References
Gonzalez, W. D., Tsurutani, B. T. & Clúa de Gonzalez, A. L. Interplanetary origin of geomagnetic storms. Space Science Reviews 88, 529–562, https://doi.org/10.1023/A:1005160129098 (1999).
Schrijver, C. J. & Siscoe, G. L., Heliophysics: Evolving Solar Activity and the Climates of Space and Earth. Cambridge University Press, Cambridge, UK. (2010).
Vemareddy, P. & Mishra, W. A full study on the Sun-Earth connection of an Earth-directed CME magnetic flux rope. The Astrophysical Journal 814(1), 59, https://doi.org/10.1088/0004-637X/814/1/59 (2015).
Temmer, M. et al. Flare-CME characteristics from Sun to Earth combining observations and modeling. In. EGU General Assembly Conference Abstracts 19, 1942 (2017).
Pulkkinen, A., Bernabeu, E., Eichner, J., Viljanen, A. & Ngwira, C. Regional-scale high-latitude extreme geoelectric fields pertaining to geomagnetically induced currents. Earth, Planets and Space 67, 93, https://doi.org/10.1186/s40623-015-0255-6 (2015).
Bateman, G., MHD Instabilities. OSTI.GOV, United States. https://www.osti.gov/biblio/6503774 (1978).
Amari, T., Luciani, J. F., Aly, J. J. & Tagger, M. Very fast opening of a three-dimensional twisted magnetic flux tube. The Astrophysical Journal 466(1), L39–L42, https://doi.org/10.1086/310158 (1996).
Antiochos, S. K., DeVore, C. R. & Klimchuk, J. A. A model for solar coronal mass ejections. The Astrophysical Journal 510(1), 485–493, https://doi.org/10.1086/306563 (1999).
Moore, R. L., Sterling, A. C., Hudson, H. S. & Lemen, J. R. Onset of the magnetic explosion in solar flares and coronal mass ejections. The Astrophysical Journal 552(2), 833–848, https://doi.org/10.1086/320559 (2001).
Tokman, M. & Bellan, P. M. Three-dimensional model of the structure and evolution of coronal mass ejections. The Astrophysical Journal 567(2), 1202–1210, https://doi.org/10.1086/338699 (2002).
MacNeice, P. et al. A numerical study of the breakout model for coronal mass ejection initiation. The Astrophysical Journal 614(2), 1028–1041, https://doi.org/10.1086/423887 (2004).
Török, T., Kliem, B. & Titov, V. S. Ideal kink instability of a magnetic loop equilibrium. Astronomy & Astrophysics 413(3), L27–L30, https://doi.org/10.1051/0004-6361:20031691 (2004).
Kliem, B. & Török, T. Torus instability. Physical Review Letters 96(25), 255002, https://doi.org/10.1103/physrevlett.96.255002 (2006).
Ishiguro, N. & Kusano, K. Double arc instability in the solar corona. The Astrophysical Journal 843(2), 101, https://doi.org/10.3847/1538-4357/aa799b (2017).
Green, L. M., Török, T., Vršnak, B., Manchester, W. & Veronig, A. The origin, early evolution and predictability of solar eruptions. Space Science Reviews 214(1), 46, https://doi.org/10.1007/s11214-017-0462-5 (2018).
Georgoulis, M. K. & Rust, D. M. Quantitative forecasting of major solar flares. The Astrophysical Journal Letters 661(1), L109–L112, https://doi.org/10.1086/518718 (2007).
Gopalswamy, N., Xie, H., Akiyama, S., Mäkelä, P. A. & Yashiro, S. Major solar eruptions and high-energy particle events during solar cycle 24. Earth, Planets and Space 66, 104, https://doi.org/10.1186/1880-5981-66-104 (2014).
Barczynski, K. et al. A statistical comparison of EUV brightenings observed by SO/EUI with simulated brightenings in nonpotential simulations. Solar Physics 297(10), 141, https://doi.org/10.1007/s11207-022-02074-6 (2022).
Zhang, H. et al. Solar flare index prediction using SDO/HMI vector magnetic data products with statistical and machine-learning methods. The Astrophysical Journal Supplement Series 263(2), 28, https://doi.org/10.3847/1538-4365/ac9b17 (2022).
Karimov, K. et al. 3D magnetic free energy and flaring activity using 83 major solar flares. The Astrophysical Journal Letters 965(1), L5, https://doi.org/10.3847/2041-8213/ad3548 (2024).
Mackay, D. H. & Yeates, A. R. The Sun’s global photospheric and coronal magnetic fields: observations and models. Living Reviews in Solar Physics 9(1), 6, https://doi.org/10.12942/lrsp-2012-6 (2012).
Toriumi, S. & Wang, H. Flare-productive active regions. Living Reviews in Solar Physics 16(1), 3, https://doi.org/10.1007/s41116-019-0019-7 (2019).
Liu, N., Jing, J., Xu, Y. & Wang, H. Multi-instrument comparative study of temperature, number density, and emission measure during the precursor phase of a solar flare. The Astrophysical Journal 930(2), 154, https://doi.org/10.3847/1538-4357/ac6425 (2022).
Camporeale, E. The challenge of machine learning in space weather: nowcasting and forecasting. Space Weather 17(8), 1166–1207, https://doi.org/10.1029/2018SW002061 (2019).
Liu, H., Liu, C., Wang, J. T. L. & Wang, H. Predicting solar flares using a long short-term memory network. The Astrophysical Journal 877(2), 121, https://doi.org/10.3847/1538-4357/ab1b3c (2019).
Liu, H., Liu, C., Wang, J. T. L. & Wang, H. Predicting coronal mass ejections using SDO/HMI vector magnetic data products and recurrent neural networks. The Astrophysical Journal 890(1), 12, https://doi.org/10.3847/1538-4357/ab6850 (2020).
Alobaid, K. A. et al. Estimating coronal mass ejection mass and kinetic energy by fusion of multiple deep-learning models. The Astrophysical Journal Letters 958(2), L34, https://doi.org/10.3847/2041-8213/ad0c4a (2023).
Jiang, H. et al. Generating photospheric vector magnetograms of solar active regions for SOHO/MDI using SDO/HMI and BBSO data with deep learning. Solar Physics 298(7), 87, https://doi.org/10.1007/s11207-023-02180-z (2023).
Pesnell, W. D., Thompson, B. J. & Chamberlin, P. C. The Solar Dynamics Observatory (SDO). Solar Physics 275(1), 3–15, https://doi.org/10.1007/s11207-011-9841-3 (2012).
Scherrer, P. H.et al. The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). In The Solar Dynamics Observatory (pp. 207–227). Springer US, New York, NY. https://doi.org/10.1007/978-1-4614-3673-7_10 (2012).
Lemen, J. R. et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Physics 275(1), 17–40, https://doi.org/10.1007/s11207-011-9776-8 (2012).
Bobra, M. G. et al. The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: SHARPs - Space-Weather HMI Active Region Patches. Solar Physics 289(9), 3549–3578, https://doi.org/10.1007/s11207-014-0529-3 (2014).
Thompson, W. T. Coordinate systems for solar image data. Astronomy and Astrophysics 449(2), 791–803, https://doi.org/10.1051/0004-6361:20054262 (2006).
Scherrer, P. H., Bogart, R. S. & Bush, R. I. The Solar Oscillations Investigation - Michelson Doppler Imager. Solar Physics 162(1-2), 129–188, https://doi.org/10.1007/BF00733429 (1995).
Bertello, L. & Marble, A. R. SOLIS/VSM polar magnetic field data. arXiv preprint arXiv:1507.07976. https://arxiv.org/abs/1507.07976 (2015).
Keller, C. U., Harvey, J. W. & Giampapa, M. S., (2003). SOLIS: an innovative suite of synoptic solar instruments. In Innovative Telescopes and Instrumentation for Solar Astrophysics, edited by S. L. Keil & S. V. Avakyan, Vol. 4853, pp. 194-204. International Society for Optics and Photonics (SPIE). https://doi.org/10.1117/12.460373 (2003).
Wheatland, M. S., Sturrock, P. A. & Roumeliotis, G. An optimization approach to reconstructing force-free fields. The Astrophysical Journal 540(2), 1150–1155, https://doi.org/10.1086/309355 (2000).
Wiegelmann, T. Optimization code with weighting function for the reconstruction of coronal magnetic fields. Solar Physics 219(1), 87–108, https://doi.org/10.1023/b:sola.0000021799.39465.36 (2004).
Wiegelmann, T., Inhester, B. & Sakurai, T. Preprocessing of vector magnetograph data for a nonlinear force-free magnetic field reconstruction. Solar Physics 233(2), 215–232, https://doi.org/10.1007/s11207-006-2092-z (2006).
Hu, Q. & Dasgupta, B., (2006). A new approach to modeling non-force-free coronal magnetic field. Geophysical Research Letters, 331. https://doi.org/10.1029/2006GL026952
Hu, Q. & Dasgupta, B. An improved approach to non-force-free coronal magnetic field extrapolation. Solar Physics 247(1), 87–101, https://doi.org/10.1007/s11207-007-9090-7 (2008).
Hu, Q., Dasgupta, B., Choudhary, D. P. & Büchner, J. A practical approach to coronal magnetic field extrapolation based on the principle of minimum dissipation rate. The Astrophysical Journal 679(1), 848–853, https://doi.org/10.1086/587639 (2008).
Prasad, A., Bhattacharyya, R. & Kumar, S. Magnetohydrodynamic modeling of solar coronal dynamics with an initial non-force-free magnetic field. The Astrophysical Journal 840(1), 37, https://doi.org/10.3847/1538-4357/aa6c58 (2017).
Cheung, M. C. M. et al. Thermal diagnostics with the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory: a validated method for differential emission measure inversions. The Astrophysical Journal 807(2), 143, https://doi.org/10.1088/0004-637X/807/2/143 (2015).
Barnes, W. T. et al. The SunPy project: open source development and status of the version 1.0 core package. The Astrophysical Journal 890(1), 68, https://doi.org/10.3847/1538-4357/ab4f7a (2020).
Thomas, R. J., Starr, R. & Crannell, C. J. Expressions to determine temperatures and emission measures for solar X-ray events from GOES measurements. Solar Physics 95(2), 323–329, https://doi.org/10.1007/BF00152409 (1985).
White, S. M., Thomas, R. J. & Schwartz, R. A. Updated expressions for determining temperatures and emission measures from GOES soft X-ray measurements. Solar Physics 227(2), 231–248, https://doi.org/10.1007/s11207-005-2445-z (2005).
Metcalf, T. R. Resolving the 180-degree ambiguity in vector magnetic field measurements: the ’minimum’ energy solution. Solar Physics 155(2), 235–242, https://doi.org/10.1007/BF00680593 (1994).
Leka, K. D. et al. Resolving the 180° ambiguity in solar vector magnetic field data: evaluating the effects of noise, spatial resolution, and method assumptions. Solar Physics 260(1), 83–108, https://doi.org/10.1007/s11207-009-9440-8 (2009).
Hoeksema, J. T. et al. The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: overview and performance. Solar Physics 289(9), 3483–3530, https://doi.org/10.1007/s11207-014-0516-8 (2014).
Liu, N.et al. FlareDB: a database of significant flares in solar cycles 24 and 25 with SDO/HMI and SDO/AIA observations—quick-look movies. Zenodo, version 2025-05-31. https://doi.org/10.5281/zenodo.16790538 (2025).
Acknowledgements
N.L., Y.A., Q.L., H.W. and J.W. were funded by the National Science Foundation (NSF) under the EarthCube program in the Division of Atmospheric & Geospace Sciences (grant number: AGS-1927578). In addition, H.W. and J.W. acknowledge support from NSF grants AGS-2149748, AGS-2228996, OAC-2320147, OAC-2504860 and NASA grants 80NSSC24K0548, 80NSSC24K0843 and 80NSSC24M0174. We thank the SDO team at Stanford University for data processing and maintenance of the JSOC site. We also thank Rui Zhang for initial data downloads and Dr. Yang Liu for verifying the completeness of the data.
Author information
Authors and Affiliations
Contributions
N.L. carried out data downloading, processing, analysis, and validation for HMI and AIA images and wrote the manuscript. Y.A. contributed to the implementation of the online database and its user interface. N.L., T.K. and Q.L. performed manual quality checks for all quick look movies. H.W. and J.W. provided advice and supervised the project. All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Liu, N., Abduallah, Y., Kapure, T.S. et al. FlareDB: A Database of Significant Flares in Solar Cycles 24 and 25 with SDO/HMI and SDO/AIA Observations. Sci Data (2026). https://doi.org/10.1038/s41597-026-06607-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41597-026-06607-7


