Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Data
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific data
  3. data descriptors
  4. article
Chromosome-level genome assembly of agar-producing red seaweed Gracilaria vermiculophylla
Download PDF
Download PDF
  • Data Descriptor
  • Open access
  • Published: 02 February 2026

Chromosome-level genome assembly of agar-producing red seaweed Gracilaria vermiculophylla

  • Jianbo Jian1,
  • Yuhang Luo1,
  • Jialong Xu1,
  • Ningyin Zhong1,
  • Yajuan Peng2,
  • Zhangyan Wu2,
  • Qun Liu3,
  • Bei Luo3,
  • Xin Yang2,
  • Jing Chen1,
  • Shuqi Wang1 &
  • …
  • Hong Du1 

Scientific Data , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Comparative genomics
  • DNA sequencing

Abstract

As an agar-producing red seaweed, Gracilaria vermiculophylla plays a significant role in the food industry as well as in multiple fields, including evolutionary studies, genetic diversity analysis, and ecological research. However, a high-quality chromosome-level genome of G. vermiculophylla is not currently available. In this study, we report a high-quality chromosome-level genome for G. vermiculophylla combining short-read, Nanopore long-read, and Hi-C data. The finally assembled genome size is 77.5 Mb, with Contig N50 of 2.61 Mb and Scaffold N50 of 3.16 Mb, comprising 22 pseudochromosomes. The transposable elements (TEs) constituted 45.93 Mb of the G. vermiculophylla genome, with long terminal repeats (LTRs) accounting for 55.03% of the predominant retrotransposons. The G. vermiculophylla genome contains a total of 10,689 protein-coding genes, of which 86.14% have been functionally annotated. The BUSCO evaluation, GC content and sequencing depth assessment demonstrated the high quality of the assembly and the success of the decontamination process. The high-quality genomic information provides an invaluable resource for agar development, evolution studies, comparative genomics, genetic diversity analysis, and ecological research.

Data availability

All data related to the genome of G. vermiculophylla are available through the following databases or links. Sequence Read Archive (SRA) data was uploaded in NCBI under SRP accession SRP56419448. The short reads DNA sequencing data of G. vermiculophylla was deposited in the SRA at SRR32361124. The Hi-C data of G. vermiculophylla was deposited in the SRA at SRR32361125. The long Nanopore Cyclone DNA sequencing data of G. vermiculophylla was deposited in the SRA at SRR32361123. The genome sequences are was deposited in GenBank https://www.ncbi.nlm.nih.gov/nuccore/JBPJGC000000000.149. The genome sequences and annotation were deposited in figshare50, which included four files. The genome sequences data of G. vermiculophylla is Gv_unknow_new.fa. The annotation data of G. vermiculophylla is Gv_unknow_new.gff. The coding sequences data of G. vermiculophylla is Gv_unknow_new.cds.fa. The peptide sequences data of G. vermiculophylla is Gv_unknow_pep.fa. The data are publicly accessible under the CC BY 4.0 license via the persistent identifier https://doi.org/10.6084/m9.figshare.28667702.v3.

Code availability

There was no specific code developed in this study. Data analyses were conducted in accordance with the protocols outlined in the Methods section.

References

  1. Borg, M. et al. Red macroalgae in the genomic era. New Phytologist 240, 471–488, https://doi.org/10.1111/nph.19211 (2023).

    Google Scholar 

  2. Ismail, M. M., Alotaibi, B. S. & El-Sheekh, M. M. Therapeutic Uses of Red Macroalgae. Molecules 25, https://doi.org/10.3390/molecules25194411 (2020).

  3. Gulbransen, D. J., McGlathery, K. J., Marklund, M., Norris, J. N. & Gurgel, C. F. Gracilaria vermiculophylla (rhodophyta, gracilariales) in the virginia coastal bays, usa: cox1 analysis reveals high genetic richness of an introduced macroalga. J Phycol 48, 1278–1283, https://doi.org/10.1111/j.1529-8817.2012.01218.x (2012).

    Google Scholar 

  4. Wang, X. et al. Diversity of Gracilariaceae (Rhodophyta) in China: An integrative morphological and molecular assessment including a description of Gracilaria tsengii sp. nov. Algal Research 71, 103074, https://doi.org/10.1016/j.algal.2023.103074 (2023).

    Google Scholar 

  5. Sousa, A. M., Alves, V. D., Morais, S., Delerue-Matos, C. & Gonçalves, M. P. Agar extraction from integrated multitrophic aquacultured Gracilaria vermiculophylla: evaluation of a microwave-assisted process using response surface methodology. Bioresour Technol 101, 3258–3267, https://doi.org/10.1016/j.biortech.2009.12.061 (2010).

    Google Scholar 

  6. Sousa, A. M. et al. Structural, physical, and chemical modifications induced by microwave heating on native agar-like galactans. Journal of agricultural and food chemistry 60, 4977–4985, https://doi.org/10.1021/jf2053542 (2012).

    Google Scholar 

  7. Souza, H. K., Sousa, A. M., Gómez, J. & Gonçalves, M. P. Complexation of WPI and microwave-assisted extracted agars with different physicochemical properties. Carbohydr Polym 89, 1073–1080, https://doi.org/10.1016/j.carbpol.2012.03.065 (2012).

    Google Scholar 

  8. Pereira, A. G. et al. The Use of Invasive Algae Species as a Source of Secondary Metabolites and Biological Activities: Spain as Case-Study. Mar Drugs 19, https://doi.org/10.3390/md19040178 (2021).

  9. Magnoni, L. J. et al. Dietary supplementation of heat-treated Gracilaria and Ulva seaweeds enhanced acute hypoxia tolerance in gilthead sea bream (Sparus aurata). Biol Open 6, 897–908, https://doi.org/10.1242/bio.024299 (2017).

    Google Scholar 

  10. Valente, L. M. P. et al. Iodine enrichment of rainbow trout flesh by dietary supplementation with the red seaweed Gracilaria vermiculophylla. Aquaculture 446, 132–139, https://doi.org/10.1016/j.aquaculture.2015.05.004 (2015).

    Google Scholar 

  11. Xiang, J. X. et al. Genome-scale signatures of adaptive gene expression changes in an invasive seaweed Gracilaria vermiculophylla. Mol Ecol 32, 613–627, https://doi.org/10.1111/mec.16776 (2023).

    Google Scholar 

  12. Krueger-Hadfield, S. A. et al. Invasion of novel habitats uncouples haplo-diplontic life cycles. Mol Ecol 25, 3801–3816, https://doi.org/10.1111/mec.13718 (2016).

    Google Scholar 

  13. Liu, Y.-J. et al. The invasive alga Gracilaria vermiculophylla in the native northwest Pacific under ocean warming: Southern genetic consequence and northern range expansion. Frontiers in Marine Science ume 9, 2022, https://doi.org/10.3389/fmars.2022.983685 (2022).

    Google Scholar 

  14. Krueger-Hadfield, S. A. et al. Intraspecific diversity and genetic structure in the widespread macroalga Agarophyton vermiculophyllum. Journal of phycology 57, 1403–1410, https://doi.org/10.1111/jpy.13195 (2021).

    Google Scholar 

  15. Li, Y., Han, H. & Ma, X. Phylogenetic analysis of the complete chloroplast genome of Gracilaria vermiculophylla. Mitochondrial DNA Part B 5, 2141–2142, https://doi.org/10.1080/23802359.2020.1765708 (2020).

    Google Scholar 

  16. Nakamura-Gouvea, N. et al. Insights into agar and secondary metabolite pathways from the genome of the red alga Gracilaria domingensis (Rhodophyta, Gracilariales). J Phycol 58, 406–423, https://doi.org/10.1111/jpy.13238 (2022).

    Google Scholar 

  17. Lipinska, A. P. et al. The Rhodoexplorer Platform for Red Algal Genomics and Whole-Genome Assemblies for Several Gracilaria Species. Genome Biol Evol 15, https://doi.org/10.1093/gbe/evad124 (2023).

  18. Lee, J. et al. Analysis of the Draft Genome of the Red Seaweed Gracilariopsis chorda Provides Insights into Genome Size Evolution in Rhodophyta. Mol Biol Evol 35, 1869–1886, https://doi.org/10.1093/molbev/msy081 (2018).

    Google Scholar 

  19. Sun, X. et al. Genomic analyses of unique carbohydrate and phytohormone metabolism in the macroalga Gracilariopsis lemaneiformis (Rhodophyta). BMC Plant Biol 18, 94, https://doi.org/10.1186/s12870-018-1309-2 (2018).

    Google Scholar 

  20. Flanagan, B. A. et al. Founder effects shape linkage disequilibrium and genomic diversity of a partially clonal invader. Mol Ecol 30, 1962–1978, https://doi.org/10.1111/mec.15854 (2021).

    Google Scholar 

  21. Krueger-Hadfield, S. A. et al. Using RAD-seq to develop sex-linked markers in a haplodiplontic alga. Journal of Phycology 57, 279–294, https://doi.org/10.1111/jpy.13088 (2021).

    Google Scholar 

  22. Lipinska, A. P. et al. Structural and evolutionary features of red algal UV sex chromosomes. Genome biology 26, 341, https://doi.org/10.1186/s13059-025-03797-y (2025).

    Google Scholar 

  23. Hu, Z. M., Zeng, X., Wang, A., Shi, C. & Duan, D. An efficient method for DNA isolation from red algae. Journal of Applied Phycology 16, 161–166 (2004).

    Google Scholar 

  24. Chen, Y. et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 7, 1–6, https://doi.org/10.1093/gigascience/gix120 (2018).

    Google Scholar 

  25. Zhang, J.-Y. et al. A single-molecule nanopore sequencing platform. bioRxiv, 2024.2008.2019.608720, https://doi.org/10.1101/2024.08.19.608720 (2024).

  26. Hu, J. et al. NextDenovo: an efficient error correction and accurate assembly tool for noisy long reads. Genome biology 25, 107, https://doi.org/10.1186/s13059-024-03252-4 (2024).

    Google Scholar 

  27. Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome research 27, 737–746, https://doi.org/10.1101/gr.214270.116 (2017).

    Google Scholar 

  28. Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PloS one 9, e112963, https://doi.org/10.1371/journal.pone.0112963 (2014).

    Google Scholar 

  29. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760, https://doi.org/10.1093/bioinformatics/btp324 (2009).

    Google Scholar 

  30. Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95, https://doi.org/10.1126/science.aal3327 (2017).

    Google Scholar 

  31. Hanschen, E. R. & Starkenburg, S. R. The state of algal genome quality and diversity. Algal Research 50, 101968, https://doi.org/10.1016/j.algal.2020.101968 (2020).

    Google Scholar 

  32. Burton, J. N., Liachko, I., Dunham, M. J. & Shendure, J. Species-level deconvolution of metagenome assemblies with Hi-C-based contact probability maps. G3 (Bethesda 4, 1339–1346, https://doi.org/10.1534/g3.114.011825 (2014).

    Google Scholar 

  33. Chen, H. et al. Insights into the Ancient Adaptation to Intertidal Environments by Red Algae Based on a Genomic and Multiomics Investigation of Neoporphyra haitanensis. Mol Biol Evol 39, https://doi.org/10.1093/molbev/msab315 (2022).

  34. Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27, 573–580, https://doi.org/10.1093/nar/27.2.573 (1999).

    Google Scholar 

  35. Jurka, J. et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110, 462–467, https://doi.org/10.1159/000084979 (2005).

    Google Scholar 

  36. Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics Chapter 4, 4.10.11–14.10.14, https://doi.org/10.1002/0471250953.bi0410s25 (2009).

    Google Scholar 

  37. Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA 6, 11, https://doi.org/10.1186/s13100-015-0041-9 (2015).

    Google Scholar 

  38. Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 35, W265–268, https://doi.org/10.1093/nar/gkm286 (2007).

    Google Scholar 

  39. Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637–644, https://doi.org/10.1093/bioinformatics/btn013 (2008).

    Google Scholar 

  40. Brawley, S. H. et al. Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta). Proceedings of the National Academy of Sciences of the United States of America 114, E6361–e6370, https://doi.org/10.1073/pnas.1703088114 (2017).

    Google Scholar 

  41. Yu, X., Mo, Z., Tang, X., Gao, T. & Mao, Y. Genome-wide analysis of HSP70 gene superfamily in Pyropia yezoensis (Bangiales, Rhodophyta): identification, characterization and expression profiles in response to dehydration stress. BMC Plant Biol 21, 435, https://doi.org/10.1186/s12870-021-03213-0 (2021).

    Google Scholar 

  42. Nagano, Y., Kimura, K., Kobayashi, G. & Kawamura, Y. Genomic diversity of 39 samples of Pyropia species grown in Japan. PloS one 16, e0252207, https://doi.org/10.1371/journal.pone.0252207 (2021).

    Google Scholar 

  43. Cho, C. H. et al. Genome-wide signatures of adaptation to extreme environments in red algae. Nat Commun 14, 10, https://doi.org/10.1038/s41467-022-35566-x (2023).

    Google Scholar 

  44. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37, 907–915, https://doi.org/10.1038/s41587-019-0201-4 (2019).

    Google Scholar 

  45. Kovaka, S. et al. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome biology 20, 278, https://doi.org/10.1186/s13059-019-1910-1 (2019).

    Google Scholar 

  46. Keilwagen, J. et al. Using intron position conservation for homology-based gene prediction. Nucleic Acids Res 44, e89, https://doi.org/10.1093/nar/gkw092 (2016).

    Google Scholar 

  47. Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome biology 9, R7, https://doi.org/10.1186/gb-2008-9-1-r7 (2008).

    Google Scholar 

  48. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP564194 (2025).

  49. Jian, J. Chromosome-level genome assembly of agar-producing red seaweed Gracilaria vermiculophylla. https://identifiers.org/ncbi/insdc.gca:GCA_054346105.1 (2025).

  50. Jian, J. et al. Chromosome-level genome assembly of agar-producing red seaweed Gracilaria vermiculophylla. figshare https://doi.org/10.6084/m9.figshare.28667702.v1 (2025).

  51. Zhou, Z. et al. Chromosome-level assembly and gene annotation of Kappaphycus striatus genome. Scientific Data 12, 249, https://doi.org/10.1038/s41597-025-04583-y (2025).

    Google Scholar 

  52. Petroll, R. et al. The expanded Bostrychia moritziana genome unveils evolution in the most diverse and complex order of red algae. Current Biology 35, 2771–2788.e2778, https://doi.org/10.1016/j.cub.2025.04.044 (2025).

    Google Scholar 

  53. Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome biology 21, 245, https://doi.org/10.1186/s13059-020-02134-9 (2020).

    Google Scholar 

  54. Manni, M., Berkeley, M. R., Seppey, M., Simao, F. A. & Zdobnov, E. M. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol Biol Evol 38, 4647–4654, https://doi.org/10.1093/molbev/msab199 (2021).

    Google Scholar 

  55. Marçais, G. et al. MUMmer4: A fast and versatile genome alignment system. PLoS Comput Biol 14, e1005944, https://doi.org/10.1371/journal.pcbi.1005944 (2018).

    Google Scholar 

  56. Tang, H. et al. JCVI: A versatile toolkit for comparative genomics analysis. iMeta 3, e211, https://doi.org/10.1002/imt2.211 (2024).

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by Research on industrial innovation technology for Guangdong modern marine ranching (2024-MRI-001-07), STU Scientific Research Initiation Grant (NTF25030T) and County-Level Innovation Base of the Guangdong “Hundreds–Thousands–Ten Thousands” High-Quality Development Initiative (Nan’ao County, Shantou City) (No.STKJ2024003).

Author information

Authors and Affiliations

  1. Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China

    Jianbo Jian, Yuhang Luo, Jialong Xu, Ningyin Zhong, Jing Chen, Shuqi Wang & Hong Du

  2. BGI Genomics, Shenzhen, 518083, China

    Yajuan Peng, Zhangyan Wu & Xin Yang

  3. Wuhan BGI Technology Service Co., Ltd. BGI-Wuhan, Wuhan, 430000, China

    Qun Liu & Bei Luo

Authors
  1. Jianbo Jian
    View author publications

    Search author on:PubMed Google Scholar

  2. Yuhang Luo
    View author publications

    Search author on:PubMed Google Scholar

  3. Jialong Xu
    View author publications

    Search author on:PubMed Google Scholar

  4. Ningyin Zhong
    View author publications

    Search author on:PubMed Google Scholar

  5. Yajuan Peng
    View author publications

    Search author on:PubMed Google Scholar

  6. Zhangyan Wu
    View author publications

    Search author on:PubMed Google Scholar

  7. Qun Liu
    View author publications

    Search author on:PubMed Google Scholar

  8. Bei Luo
    View author publications

    Search author on:PubMed Google Scholar

  9. Xin Yang
    View author publications

    Search author on:PubMed Google Scholar

  10. Jing Chen
    View author publications

    Search author on:PubMed Google Scholar

  11. Shuqi Wang
    View author publications

    Search author on:PubMed Google Scholar

  12. Hong Du
    View author publications

    Search author on:PubMed Google Scholar

Contributions

H. Du and J. Jian conceived the study. Y. Luo, J. Xu, Y. Zhong, Q. Liu, B. Luo, J. Chen and X. Yang collected the samples, conducted experiments, library construction and sequencing. J. Jian, Y. Peng and Z. Wu performed bioinformatics analysis. J. Jian wrote the manuscript. H. Du and S. Wang revised the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Hong Du.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jian, J., Luo, Y., Xu, J. et al. Chromosome-level genome assembly of agar-producing red seaweed Gracilaria vermiculophylla. Sci Data (2026). https://doi.org/10.1038/s41597-026-06635-3

Download citation

  • Received: 31 March 2025

  • Accepted: 13 January 2026

  • Published: 02 February 2026

  • DOI: https://doi.org/10.1038/s41597-026-06635-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims and scope
  • Editors & Editorial Board
  • Journal Metrics
  • Policies
  • Open Access Fees and Funding
  • Calls for Papers
  • Contact

Publish with us

  • Submission Guidelines
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Data (Sci Data)

ISSN 2052-4463 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing