Abstract
We present a new database providing spatial data to support plant ecological research and conservation throughout mainland Spain. It integrates high-resolution spatial data of four main categories: (I) plant occurrence data, (II) environmental variables, (III) species distribution models, and (IV) thematic maps for conservation and management. The occurrence dataset includes georeferenced records for 81 tree and 101 shrub native species, and atlas data for 6,456 vascular plants and 1,252 bryophytes. Environmental variables include climatic, edaphic, hydrological, and solar, factors influencing plant distribution. Species distribution models are available for all the trees and shrubs (182 species). Thematic maps include species richness for woody and protected plants, distribution of vegetation types, and forest connectivity. All climatic variables, models, and thematic maps are projected under current and four future climate scenarios (2070–2100). The database is openly available on Zenodo.
Data availability
The database is hosted on the geoSABINA ZENODO community (https://zenodo.org/communities/geosabinadatabase) and sorted in six structured repositories: Species occurrences (https://zenodo.org/records/14738870)51, Environmental variables (https://zenodo.org/records/14583868)52, SDMs of tree species (https://zenodo.org/records/14606557)53, SDMs of shrub species with names from A to T (https://zenodo.org/records/14679933)54, SDMs of shrub species with names from U to Z (https://zenodo.org/records/14725791)55, and Thematic conservation maps (https://zenodo.org/records/14603023)56. Additional details on the dataset contents are described in the Data Records section.
Code availability
The R-code allowing to reproduce the bryophytes occurrence records selection and filtering, the species data and environmental variables download, the SDMs, the thematic maps, and the technical validation are openly available on the geoSABINA GitHub repository https://github.com/geoSABINA/database.
References
Brockerhoff, E. G. et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodiversity and Conservation 26, 3005–3035, https://doi.org/10.1007/s10531-017-1453-2 (2017).
Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models. With Applications in R. 462 (Cambridge University Press, 2017).
Karger, D. N., Chauvier, Y. & Zimmermann, N. E. chelsa-cmip6 1.0: a python package to create high resolution bioclimatic variables based on CHELSA ver. 2.1 and CMIP6 data. Ecography 2023, e06535, https://doi.org/10.1111/ecog.06535 (2023).
Sabaghy, S. et al. Comprehensive analysis of alternative downscaled soil moisture products. Remote Sensing of Environment 239, 111586, https://doi.org/10.1016/j.rse.2019.111586 (2020).
Riva, F. et al. Incorporating effects of habitat patches into species distribution models. Journal of Ecology 112, 2162–2182, https://doi.org/10.1111/1365-2745.14403 (2024).
Seppey, C. V. W. et al. Landscape structure is a key driver of soil protist diversity in meadows in the Swiss Alps. Landscape Ecology 38, 949–965, https://doi.org/10.1007/s10980-022-01572-z (2023).
Thuiller, W., Lavorel, S., Araujo, M. B., Sykes, M. T. & Prentice, I. C. Climate change threats to plant diversity in Europe. PNAS 102, 8245–8250, https://doi.org/10.1073/pnas.0409902102 (2005).
Scherrer, D., D’Amen, M., Fernandes, R. F., Mateo, R. G. & Guisan, A. How to best threshold and validate stacked species assemblages? Community optimisation might hold the answer. Methods in Ecology and Evolution 9, 2155–2166, https://doi.org/10.1111/2041-210X.13041 (2018).
Rey, P.-L., Vittoz, P., Petitpierre, B., Adde, A. & Guisan, A. Linking plant and vertebrate species to Nature’s Contributions to People in the Swiss Alps. Scientific Reports 13, 7312, https://doi.org/10.1038/s41598-023-34236-2 (2023).
Urziceanu, M. M. et al. Assessing the Invasion Risk of Humulus scandens Using Ensemble Species Distribution Modeling and Habitat Connectivity Analysis. Plants 11, 857 (2022).
Fajardo, J. et al. The performance of protected-area expansions in representing tropical Andean species: past trends and climate change prospects. Scientific Reports 13, 966, https://doi.org/10.1038/s41598-022-27365-7 (2023).
Mateo, R. G., de la Estrella, M., Felicísimo, Á. M., Muñoz, J. & Guisan, A. A new spin on a compositionalist predictive modelling framework for conservation planning: A tropical case study in Ecuador. Biological Conservation 160, 150–161, https://doi.org/10.1016/j.biocon.2013.01.014 (2013).
Moreno-Saiz, J. C., Albertos, B., Ruiz-Molero, E. & Mateo, R. G. The European Union can afford greater ambition in the conservation of its threatened plants. Biological Conservation 261, 109231, https://doi.org/10.1016/j.biocon.2021.109231 (2021).
Elith, J. et al. Presence-only and Presence-absence Data for Comparing Species Distribution Modeling Methods. Biodiversity Informatics 15, 69–80, https://doi.org/10.17161/bi.v15i2.13384 (2020).
Güntsch, A. et al. National biodiversity data infrastructures: ten essential functions for science, policy, and practice. BioScience https://doi.org/10.1093/biosci/biae109 (2024).
Heberling, J. M., Miller, J. T., Noesgaard, D., Weingart, S. B. & Schigel, D. Data integration enables global biodiversity synthesis. Proceedings of the National Academy of Sciences 118, e2018093118, https://doi.org/10.1073/pnas.2018093118 (2021).
Soriano-Redondo, A. et al. Harnessing online digital data in biodiversity monitoring. PLOS Biology 22, e3002497, https://doi.org/10.1371/journal.pbio.3002497 (2024).
Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Scientific Data 4, 170122, https://doi.org/10.1038/sdata.2017.122 (2017).
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37, 4302–4315, https://doi.org/10.1002/joc.5086 (2017).
Poggio, L. et al. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. SOIL 7, 217–240, https://doi.org/10.5194/soil-7-217-2021 (2021).
Lagisz, M., Westgate, M., Kellie, D. & Nakagawa, S. Going global by going local: Impacts and opportunities of geographically focused data integration. BioScience 74, 640–651, https://doi.org/10.1093/biosci/biae070 (2024).
König, C. et al. Biodiversity data integration—the significance of data resolution and domain. PLOS Biology 17, e3000183, https://doi.org/10.1371/journal.pbio.3000183 (2019).
Frans, V. F. et al. Integrated SDM database: Enhancing the relevance and utility of species distribution models in conservation management. Methods in Ecology and Evolution 13, 243–261, https://doi.org/10.1111/2041-210X.13736 (2022).
Hannah, L., Midgley, G. F. & Millar, D. Climate change-integrated conservation strategies. Global Ecology and Biogeography 11, 485–495, https://doi.org/10.1046/j.1466-822X.2002.00306.x (2002).
Goicolea, T. et al. Spatially-Nested Hierarchical Species Distribution Models to Overcome Niche Truncation in National-Scale Studies. Ecography, (2024).
Ramos-Gutiérrez, I. et al. Atlas of the vascular flora of the Iberian Peninsula biodiversity hotspot (AFLIBER). Global Ecology and Biogeography 30, 1951–1957, https://doi.org/10.1111/geb.13363 (2021).
Goicolea, T. et al. Designing conservation networks to ensure connectivity in a changing climate: application to Spanish forests. Diversity and distributions, (2025).
Aedo, C., Medina, L. & Fernández-Albert, M. Species richness and endemicity in the Spanish vascular flora. Nordic Journal of Botany, no-no, https://doi.org/10.1111/j.1756-1051.2012.00009.x (2013).
IPCC. IPCC, 2023: Sections. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)], https://doi.org/10.59327/IPCC/AR6-9789291691647 (2023).
Loidi, J. (Springer, Cham (Switzerland), 2017).
Mauri, A., Strona, G. & San-Miguel-Ayanz, J. EU-Forest, a high-resolution tree occurrence dataset for Europe. Scientific Data 4, 160123, https://doi.org/10.1038/sdata.2016.123 (2017).
Chamberlain, S. et al. (2024).
O’Neill, B. C. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change 122, 387–400, https://doi.org/10.1007/s10584-013-0905-2 (2014).
MITECO. (https://Wms.Mapama.Gob.Es/Sig/Agua/RiosCompPfafs/Wms.Aspx?, 2018).
Mateo, R. G. et al. sabinaNSDM: An R package for spatially nested hierarchical species distribution modelling. Methods in Ecology and Evolution 15, 1796–1803, https://doi.org/10.1111/2041-210X.14417 (2024).
Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends in ecology and evolution 22, 42–47 (2007).
Guisan, A., Edwards, T. C. Jr. & Hastie, T. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modelling 157, 89–100 (2002).
Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. Journal of Animal Ecology 77, 802–813 (2008).
Valavi, R., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. Modelling species presence-only data with random forests. Ecography 44, 1731–1742, https://doi.org/10.1111/ecog.05615 (2021).
Adde, A. et al. Too many candidates: embedded covariate selection procedure for species distribution modelling with the covsel R package. Ecological Informatics 75, 102080 (2023).
Guisan, A. et al. Spatially-nested species distribution models (N-SDM): an effective tool to overcome niche truncation for better projections. Journal of Ecology, https://doi.org/10.1016/j.ecoinf.2023.102080 (2025).
Adde, A. et al. N-SDM: a high-performance computing pipeline for Nested Species Distribution Modelling. Ecography 2023, e06540, https://doi.org/10.1111/ecog.06540 (2023).
Breiner, F. T., Guisan, A., Bergamini, A. & Nobis, M. P. Overcoming limitations of modelling rare species by using ensembles of small models. Methods in Ecology and Evolution 6, 1210–1218, https://doi.org/10.1111/2041-210X.12403 (2015).
de la Ruiz Torre, J. Mapa Forestal de España 1:200.000 Memoria General (1990).
Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 8–22 (2002).
Copernicus Land Monitoring Service, E. E. A. (EEA). CORINE Land Cover (2018).
Etten, J. v. R package gdistance: Distances and routes on geographical grids. Journal of Statistical Software 76, 1–21 (2017).
Saura, S. & Pascual-Hortal, L. A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landscape and Urban Planning 83, 91–103, https://doi.org/10.1016/j.landurbplan.2007.03.005 (2007).
Saura, S. & Rubio, L. A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 33, 523–537 (2010).
Godínez-Gómez, Ó., Correa Ayram, C. A., Goicolea, T. & Saura, S. Makurhini: An R Package for Comprehensive Analysis of Landscape Fragmentation and Connectivity. Research Square (2025).
Goicolea, T., Morales-Barbero, J. & Mateo, R. G. geoSABINA: Species occurrences. https://zenodo.org/records/14738870, https://doi.org/10.5281/zenodo.14738870 (2025).
Goicolea, T., Morales-Barbero, J. & Mateo, R. G. geoSABINA: Environmental variables. https://zenodo.org/records/14583868, https://doi.org/10.5281/zenodo.14583868 (2025).
Goicolea, T., Morales-Barbero, J. & Mateo, R. G. geoSABINA: Species distribution models (SDMs): Tree species. https://zenodo.org/records/14606557, https://doi.org/10.5281/zenodo.14606557 (2025).
Goicolea, T., Morales-Barbero, J. & Mateo, R. G. geoSABINA: Species distribution models (SDMs): Shrub species (files A - T). https://zenodo.org/records/14679933, https://doi.org/10.5281/zenodo.14679933 (2025).
Goicolea, T., Morales-Barbero, J. & Mateo, R. G. geoSABINA: Species distribution models (SDMs): Shrub species (files U - Z). https://zenodo.org/records/14725791, https://doi.org/10.5281/zenodo.14725791 (2025).
Goicolea, T., Morales-Barbero, J. & Mateo, R. G. geoSABINA: Thematic conservation maps. https://zenodo.org/records/14603023, https://doi.org/10.5281/zenodo.14603023 (2025).
Acknowledgements
We are grateful to all institutions and contributors who made the input data freely available. We thank the Ministerio para la Transición Ecológica y el Reto Demográfico (MITECO) for providing the occurrence data of protected species. This study was supported through the Connect2restore project (TED2021-129589B-I00) funded by Ministerio de Ciencia e Innovación (Agencia Estatal de Investigación) and “Unión Europea NextGenerationEU/PRTR” and the NextDive Project (PID2021-124187NB-I00) funded by Ministerio de Ciencia e Innovación (Agencia Estatal de Investigación) and “FEDER A way to make Europe”.
Author information
Authors and Affiliations
Contributions
R.G.M., J.M.B. and T.G. developed the idea and contributed to the overall study conception and design. A.G., J.A.C., J.C.M., J.I.G.V., M.A.R. and T.G. contributed to the species presence occurrence collecting and curation. I.R.G. and A.V.P.L. developed the bryophyte atlas. A.A., A.G., O.B., J.M.B., R.G.M. and T.G. contributed to the environmental variables collection and design of the species distribution models, while H.L. and R.G.M. performed the species distribution models for shrubs and trees, and A.A. and T.G. for protected species. A.G., J.I.G.V. and M.J.A.-F. conceived and evaluated the classification of the vegetation types. M.J.A.-F. performed the models for the classification of the vegetation types, while T.G. conducted the connectivity analyses. J.M.B. performed the data standardization and checks, and T.G. uploaded it to Zenodo. The first draft of the manuscript was written by R.G.M. and T.G., and it was reviewed by the rest of the authors. Funding for the study was secured by J.C.M., M.A.R. and R.G.M., who obtained the necessary financial support to conduct and complete the research. All authors thoroughly read and approved the final version of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Goicolea, T., Morales-Barbero, J., García-Viñas, J.I. et al. A unified plant ecology database for Spain. Sci Data (2026). https://doi.org/10.1038/s41597-026-06757-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41597-026-06757-8