Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Data
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific data
  3. data descriptors
  4. article
A unified plant ecology database for Spain
Download PDF
Download PDF
  • Data Descriptor
  • Open access
  • Published: 04 February 2026

A unified plant ecology database for Spain

  • Teresa Goicolea1,2,
  • Jennifer Morales-Barbero1,
  • Juan Ignacio García-Viñas3,
  • Aitor Gastón3,
  • María José Aroca-Fernández3,
  • Juan Antonio Calleja1,4,
  • Juan Carlos Moreno1,4,
  • Ignacio Ramos-Gutiérrez1,
  • Miguel Á. Rodríguez  ORCID: orcid.org/0000-0002-4082-29955,
  • Herlander Lima6,
  • Olivier Broennimann  ORCID: orcid.org/0000-0001-9913-36957,8,
  • Antoine Guisan  ORCID: orcid.org/0000-0002-3998-48157,8,
  • Antoine Adde  ORCID: orcid.org/0000-0003-4388-08809,
  • Andrés V. Pérez-Latorre10 &
  • …
  • Rubén G. Mateo  ORCID: orcid.org/0000-0001-8577-001X1,4 

Scientific Data , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biodiversity
  • Biogeography
  • Climate-change ecology
  • Ecological modelling
  • Forestry

Abstract

We present a new database providing spatial data to support plant ecological research and conservation throughout mainland Spain. It integrates high-resolution spatial data of four main categories: (I) plant occurrence data, (II) environmental variables, (III) species distribution models, and (IV) thematic maps for conservation and management. The occurrence dataset includes georeferenced records for 81 tree and 101 shrub native species, and atlas data for 6,456 vascular plants and 1,252 bryophytes. Environmental variables include climatic, edaphic, hydrological, and solar, factors influencing plant distribution. Species distribution models are available for all the trees and shrubs (182 species). Thematic maps include species richness for woody and protected plants, distribution of vegetation types, and forest connectivity. All climatic variables, models, and thematic maps are projected under current and four future climate scenarios (2070–2100). The database is openly available on Zenodo.

Data availability

The database is hosted on the geoSABINA ZENODO community (https://zenodo.org/communities/geosabinadatabase) and sorted in six structured repositories: Species occurrences (https://zenodo.org/records/14738870)51, Environmental variables (https://zenodo.org/records/14583868)52, SDMs of tree species (https://zenodo.org/records/14606557)53, SDMs of shrub species with names from A to T (https://zenodo.org/records/14679933)54, SDMs of shrub species with names from U to Z (https://zenodo.org/records/14725791)55, and Thematic conservation maps (https://zenodo.org/records/14603023)56. Additional details on the dataset contents are described in the Data Records section.

Code availability

The R-code allowing to reproduce the bryophytes occurrence records selection and filtering, the species data and environmental variables download, the SDMs, the thematic maps, and the technical validation are openly available on the geoSABINA GitHub repository https://github.com/geoSABINA/database.

References

  1. Brockerhoff, E. G. et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodiversity and Conservation 26, 3005–3035, https://doi.org/10.1007/s10531-017-1453-2 (2017).

    Google Scholar 

  2. Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models. With Applications in R. 462 (Cambridge University Press, 2017).

  3. Karger, D. N., Chauvier, Y. & Zimmermann, N. E. chelsa-cmip6 1.0: a python package to create high resolution bioclimatic variables based on CHELSA ver. 2.1 and CMIP6 data. Ecography 2023, e06535, https://doi.org/10.1111/ecog.06535 (2023).

    Google Scholar 

  4. Sabaghy, S. et al. Comprehensive analysis of alternative downscaled soil moisture products. Remote Sensing of Environment 239, 111586, https://doi.org/10.1016/j.rse.2019.111586 (2020).

    Google Scholar 

  5. Riva, F. et al. Incorporating effects of habitat patches into species distribution models. Journal of Ecology 112, 2162–2182, https://doi.org/10.1111/1365-2745.14403 (2024).

    Google Scholar 

  6. Seppey, C. V. W. et al. Landscape structure is a key driver of soil protist diversity in meadows in the Swiss Alps. Landscape Ecology 38, 949–965, https://doi.org/10.1007/s10980-022-01572-z (2023).

    Google Scholar 

  7. Thuiller, W., Lavorel, S., Araujo, M. B., Sykes, M. T. & Prentice, I. C. Climate change threats to plant diversity in Europe. PNAS 102, 8245–8250, https://doi.org/10.1073/pnas.0409902102 (2005).

    Google Scholar 

  8. Scherrer, D., D’Amen, M., Fernandes, R. F., Mateo, R. G. & Guisan, A. How to best threshold and validate stacked species assemblages? Community optimisation might hold the answer. Methods in Ecology and Evolution 9, 2155–2166, https://doi.org/10.1111/2041-210X.13041 (2018).

    Google Scholar 

  9. Rey, P.-L., Vittoz, P., Petitpierre, B., Adde, A. & Guisan, A. Linking plant and vertebrate species to Nature’s Contributions to People in the Swiss Alps. Scientific Reports 13, 7312, https://doi.org/10.1038/s41598-023-34236-2 (2023).

    Google Scholar 

  10. Urziceanu, M. M. et al. Assessing the Invasion Risk of Humulus scandens Using Ensemble Species Distribution Modeling and Habitat Connectivity Analysis. Plants 11, 857 (2022).

    Google Scholar 

  11. Fajardo, J. et al. The performance of protected-area expansions in representing tropical Andean species: past trends and climate change prospects. Scientific Reports 13, 966, https://doi.org/10.1038/s41598-022-27365-7 (2023).

    Google Scholar 

  12. Mateo, R. G., de la Estrella, M., Felicísimo, Á. M., Muñoz, J. & Guisan, A. A new spin on a compositionalist predictive modelling framework for conservation planning: A tropical case study in Ecuador. Biological Conservation 160, 150–161, https://doi.org/10.1016/j.biocon.2013.01.014 (2013).

    Google Scholar 

  13. Moreno-Saiz, J. C., Albertos, B., Ruiz-Molero, E. & Mateo, R. G. The European Union can afford greater ambition in the conservation of its threatened plants. Biological Conservation 261, 109231, https://doi.org/10.1016/j.biocon.2021.109231 (2021).

    Google Scholar 

  14. Elith, J. et al. Presence-only and Presence-absence Data for Comparing Species Distribution Modeling Methods. Biodiversity Informatics 15, 69–80, https://doi.org/10.17161/bi.v15i2.13384 (2020).

    Google Scholar 

  15. Güntsch, A. et al. National biodiversity data infrastructures: ten essential functions for science, policy, and practice. BioScience https://doi.org/10.1093/biosci/biae109 (2024).

    Google Scholar 

  16. Heberling, J. M., Miller, J. T., Noesgaard, D., Weingart, S. B. & Schigel, D. Data integration enables global biodiversity synthesis. Proceedings of the National Academy of Sciences 118, e2018093118, https://doi.org/10.1073/pnas.2018093118 (2021).

    Google Scholar 

  17. Soriano-Redondo, A. et al. Harnessing online digital data in biodiversity monitoring. PLOS Biology 22, e3002497, https://doi.org/10.1371/journal.pbio.3002497 (2024).

    Google Scholar 

  18. Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Scientific Data 4, 170122, https://doi.org/10.1038/sdata.2017.122 (2017).

    Google Scholar 

  19. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37, 4302–4315, https://doi.org/10.1002/joc.5086 (2017).

    Google Scholar 

  20. Poggio, L. et al. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. SOIL 7, 217–240, https://doi.org/10.5194/soil-7-217-2021 (2021).

    Google Scholar 

  21. Lagisz, M., Westgate, M., Kellie, D. & Nakagawa, S. Going global by going local: Impacts and opportunities of geographically focused data integration. BioScience 74, 640–651, https://doi.org/10.1093/biosci/biae070 (2024).

    Google Scholar 

  22. König, C. et al. Biodiversity data integration—the significance of data resolution and domain. PLOS Biology 17, e3000183, https://doi.org/10.1371/journal.pbio.3000183 (2019).

    Google Scholar 

  23. Frans, V. F. et al. Integrated SDM database: Enhancing the relevance and utility of species distribution models in conservation management. Methods in Ecology and Evolution 13, 243–261, https://doi.org/10.1111/2041-210X.13736 (2022).

    Google Scholar 

  24. Hannah, L., Midgley, G. F. & Millar, D. Climate change-integrated conservation strategies. Global Ecology and Biogeography 11, 485–495, https://doi.org/10.1046/j.1466-822X.2002.00306.x (2002).

    Google Scholar 

  25. Goicolea, T. et al. Spatially-Nested Hierarchical Species Distribution Models to Overcome Niche Truncation in National-Scale Studies. Ecography, (2024).

  26. Ramos-Gutiérrez, I. et al. Atlas of the vascular flora of the Iberian Peninsula biodiversity hotspot (AFLIBER). Global Ecology and Biogeography 30, 1951–1957, https://doi.org/10.1111/geb.13363 (2021).

    Google Scholar 

  27. Goicolea, T. et al. Designing conservation networks to ensure connectivity in a changing climate: application to Spanish forests. Diversity and distributions, (2025).

  28. Aedo, C., Medina, L. & Fernández-Albert, M. Species richness and endemicity in the Spanish vascular flora. Nordic Journal of Botany, no-no, https://doi.org/10.1111/j.1756-1051.2012.00009.x (2013).

  29. IPCC. IPCC, 2023: Sections. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)], https://doi.org/10.59327/IPCC/AR6-9789291691647 (2023).

  30. Loidi, J. (Springer, Cham (Switzerland), 2017).

  31. Mauri, A., Strona, G. & San-Miguel-Ayanz, J. EU-Forest, a high-resolution tree occurrence dataset for Europe. Scientific Data 4, 160123, https://doi.org/10.1038/sdata.2016.123 (2017).

    Google Scholar 

  32. Chamberlain, S. et al. (2024).

  33. O’Neill, B. C. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change 122, 387–400, https://doi.org/10.1007/s10584-013-0905-2 (2014).

    Google Scholar 

  34. MITECO. (https://Wms.Mapama.Gob.Es/Sig/Agua/RiosCompPfafs/Wms.Aspx?, 2018).

  35. Mateo, R. G. et al. sabinaNSDM: An R package for spatially nested hierarchical species distribution modelling. Methods in Ecology and Evolution 15, 1796–1803, https://doi.org/10.1111/2041-210X.14417 (2024).

    Google Scholar 

  36. Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends in ecology and evolution 22, 42–47 (2007).

    Google Scholar 

  37. Guisan, A., Edwards, T. C. Jr. & Hastie, T. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modelling 157, 89–100 (2002).

    Google Scholar 

  38. Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. Journal of Animal Ecology 77, 802–813 (2008).

    Google Scholar 

  39. Valavi, R., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. Modelling species presence-only data with random forests. Ecography 44, 1731–1742, https://doi.org/10.1111/ecog.05615 (2021).

    Google Scholar 

  40. Adde, A. et al. Too many candidates: embedded covariate selection procedure for species distribution modelling with the covsel R package. Ecological Informatics 75, 102080 (2023).

    Google Scholar 

  41. Guisan, A. et al. Spatially-nested species distribution models (N-SDM): an effective tool to overcome niche truncation for better projections. Journal of Ecology, https://doi.org/10.1016/j.ecoinf.2023.102080 (2025).

  42. Adde, A. et al. N-SDM: a high-performance computing pipeline for Nested Species Distribution Modelling. Ecography 2023, e06540, https://doi.org/10.1111/ecog.06540 (2023).

    Google Scholar 

  43. Breiner, F. T., Guisan, A., Bergamini, A. & Nobis, M. P. Overcoming limitations of modelling rare species by using ensembles of small models. Methods in Ecology and Evolution 6, 1210–1218, https://doi.org/10.1111/2041-210X.12403 (2015).

    Google Scholar 

  44. de la Ruiz Torre, J. Mapa Forestal de España 1:200.000 Memoria General (1990).

  45. Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 8–22 (2002).

    Google Scholar 

  46. Copernicus Land Monitoring Service, E. E. A. (EEA). CORINE Land Cover (2018).

  47. Etten, J. v. R package gdistance: Distances and routes on geographical grids. Journal of Statistical Software 76, 1–21 (2017).

    Google Scholar 

  48. Saura, S. & Pascual-Hortal, L. A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landscape and Urban Planning 83, 91–103, https://doi.org/10.1016/j.landurbplan.2007.03.005 (2007).

    Google Scholar 

  49. Saura, S. & Rubio, L. A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 33, 523–537 (2010).

    Google Scholar 

  50. Godínez-Gómez, Ó., Correa Ayram, C. A., Goicolea, T. & Saura, S. Makurhini: An R Package for Comprehensive Analysis of Landscape Fragmentation and Connectivity. Research Square (2025).

  51. Goicolea, T., Morales-Barbero, J. & Mateo, R. G. geoSABINA: Species occurrences. https://zenodo.org/records/14738870, https://doi.org/10.5281/zenodo.14738870 (2025).

  52. Goicolea, T., Morales-Barbero, J. & Mateo, R. G. geoSABINA: Environmental variables. https://zenodo.org/records/14583868, https://doi.org/10.5281/zenodo.14583868 (2025).

  53. Goicolea, T., Morales-Barbero, J. & Mateo, R. G. geoSABINA: Species distribution models (SDMs): Tree species. https://zenodo.org/records/14606557, https://doi.org/10.5281/zenodo.14606557 (2025).

  54. Goicolea, T., Morales-Barbero, J. & Mateo, R. G. geoSABINA: Species distribution models (SDMs): Shrub species (files A - T). https://zenodo.org/records/14679933, https://doi.org/10.5281/zenodo.14679933 (2025).

  55. Goicolea, T., Morales-Barbero, J. & Mateo, R. G. geoSABINA: Species distribution models (SDMs): Shrub species (files U - Z). https://zenodo.org/records/14725791, https://doi.org/10.5281/zenodo.14725791 (2025).

  56. Goicolea, T., Morales-Barbero, J. & Mateo, R. G. geoSABINA: Thematic conservation maps. https://zenodo.org/records/14603023, https://doi.org/10.5281/zenodo.14603023 (2025).

Download references

Acknowledgements

We are grateful to all institutions and contributors who made the input data freely available. We thank the Ministerio para la Transición Ecológica y el Reto Demográfico (MITECO) for providing the occurrence data of protected species. This study was supported through the Connect2restore project (TED2021-129589B-I00) funded by Ministerio de Ciencia e Innovación (Agencia Estatal de Investigación) and “Unión Europea NextGenerationEU/PRTR” and the NextDive Project (PID2021-124187NB-I00) funded by Ministerio de Ciencia e Innovación (Agencia Estatal de Investigación) and “FEDER A way to make Europe”.

Author information

Authors and Affiliations

  1. Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain

    Teresa Goicolea, Jennifer Morales-Barbero, Juan Antonio Calleja, Juan Carlos Moreno, Ignacio Ramos-Gutiérrez & Rubén G. Mateo

  2. Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (CSIC), 28006, Madrid, Spain

    Teresa Goicolea

  3. Centro para la Conservación de la Biodiversidad y el Desarrollo Sostenible (CBDS), ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, Spain

    Juan Ignacio García-Viñas, Aitor Gastón & María José Aroca-Fernández

  4. Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain

    Juan Antonio Calleja, Juan Carlos Moreno & Rubén G. Mateo

  5. Global Change Ecology and Evolution Group (GloCEE), Department of Life Sciences, University of Alcalá, Alcalá de Henares, Spain

    Miguel Á. Rodríguez

  6. Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain

    Herlander Lima

  7. Institute of Earth Surface Dynamics, Faculty of Geosciences and Environment, University of Lausanne, Lausanne, Switzerland

    Olivier Broennimann & Antoine Guisan

  8. Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland

    Olivier Broennimann & Antoine Guisan

  9. Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland

    Antoine Adde

  10. Department of Botany and Plant Physiology (Botany Area), Faculty of Science, University of Málaga, Málaga, Spain

    Andrés V. Pérez-Latorre

Authors
  1. Teresa Goicolea
    View author publications

    Search author on:PubMed Google Scholar

  2. Jennifer Morales-Barbero
    View author publications

    Search author on:PubMed Google Scholar

  3. Juan Ignacio García-Viñas
    View author publications

    Search author on:PubMed Google Scholar

  4. Aitor Gastón
    View author publications

    Search author on:PubMed Google Scholar

  5. María José Aroca-Fernández
    View author publications

    Search author on:PubMed Google Scholar

  6. Juan Antonio Calleja
    View author publications

    Search author on:PubMed Google Scholar

  7. Juan Carlos Moreno
    View author publications

    Search author on:PubMed Google Scholar

  8. Ignacio Ramos-Gutiérrez
    View author publications

    Search author on:PubMed Google Scholar

  9. Miguel Á. Rodríguez
    View author publications

    Search author on:PubMed Google Scholar

  10. Herlander Lima
    View author publications

    Search author on:PubMed Google Scholar

  11. Olivier Broennimann
    View author publications

    Search author on:PubMed Google Scholar

  12. Antoine Guisan
    View author publications

    Search author on:PubMed Google Scholar

  13. Antoine Adde
    View author publications

    Search author on:PubMed Google Scholar

  14. Andrés V. Pérez-Latorre
    View author publications

    Search author on:PubMed Google Scholar

  15. Rubén G. Mateo
    View author publications

    Search author on:PubMed Google Scholar

Contributions

R.G.M., J.M.B. and T.G. developed the idea and contributed to the overall study conception and design. A.G., J.A.C., J.C.M., J.I.G.V., M.A.R. and T.G. contributed to the species presence occurrence collecting and curation. I.R.G. and A.V.P.L. developed the bryophyte atlas. A.A., A.G., O.B., J.M.B., R.G.M. and T.G. contributed to the environmental variables collection and design of the species distribution models, while H.L. and R.G.M. performed the species distribution models for shrubs and trees, and A.A. and T.G. for protected species. A.G., J.I.G.V. and M.J.A.-F. conceived and evaluated the classification of the vegetation types. M.J.A.-F. performed the models for the classification of the vegetation types, while T.G. conducted the connectivity analyses. J.M.B. performed the data standardization and checks, and T.G. uploaded it to Zenodo. The first draft of the manuscript was written by R.G.M. and T.G., and it was reviewed by the rest of the authors. Funding for the study was secured by J.C.M., M.A.R. and R.G.M., who obtained the necessary financial support to conduct and complete the research. All authors thoroughly read and approved the final version of the manuscript.

Corresponding author

Correspondence to Teresa Goicolea.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary material

Table S7

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goicolea, T., Morales-Barbero, J., García-Viñas, J.I. et al. A unified plant ecology database for Spain. Sci Data (2026). https://doi.org/10.1038/s41597-026-06757-8

Download citation

  • Received: 30 January 2025

  • Accepted: 29 January 2026

  • Published: 04 February 2026

  • DOI: https://doi.org/10.1038/s41597-026-06757-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims and scope
  • Editors & Editorial Board
  • Journal Metrics
  • Policies
  • Open Access Fees and Funding
  • Calls for Papers
  • Contact

Publish with us

  • Submission Guidelines
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Data (Sci Data)

ISSN 2052-4463 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing