Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Data
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific data
  3. data descriptors
  4. article
Comprehensive compilation and quality assessment of street-level urban air temperature measurements across European networks
Download PDF
Download PDF
  • Data Descriptor
  • Open access
  • Published: 14 February 2026

Comprehensive compilation and quality assessment of street-level urban air temperature measurements across European networks

  • Setareh Amini1,2,
  • Adrian Huerta  ORCID: orcid.org/0000-0002-2415-34021,2,
  • Jörg Franke  ORCID: orcid.org/0000-0001-7897-42251,2,
  • Yuri Brugnara1,2,
  • Steven Caluwaerts3,4,
  • Julien Anet5,
  • Stevan Savić6,7,
  • Moritz Gubler1,2,8,
  • Gert-Jan Steeneveld  ORCID: orcid.org/0000-0002-5922-81799,
  • Lee Chapman10,
  • Fred Meier  ORCID: orcid.org/0000-0003-0399-275711,
  • Vincent Dubreuil12,
  • Andreas Christen  ORCID: orcid.org/0000-0003-3864-170313,
  • Matthias Zeeman13,
  • Branislava Lalić14,
  • Sebastian Schlögl15,
  • Jukka Käyhkö  ORCID: orcid.org/0000-0002-3842-735516,
  • AmirMasoud Azadfar17 &
  • …
  • Stefan Brönnimann1,2 

Scientific Data , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Climate and Earth system modelling
  • Climate sciences
  • Environmental impact
  • Natural hazards

Abstract

This study provides a comprehensive dataset (FAIRUrbTemp) that addresses the lack of high-resolution urban air temperature data across Europe. It compiles sub-hourly street-level air temperature data from 811 low-cost to commercial sensors across several European cities and offers data in a quality-controlled, standardized format in sub-hourly, hourly, and daily resolutions. In addition, detailed metadata, as an important source of information in urban studies, is provided at network, station, and measurement levels. This pan-European dataset is rigorously quality-controlled using a serially automatic method applicable to diverse city-scale air temperature data, which identifies systematic and minor inconsistencies to enhance reliability. Expert-based validation shows that the QC reliably identifies problematic measurements, while its performance varies across urban and climatic settings due to local environmental and instrumental effects. To ensure transparency, the results of the quality control are provided to the user together with the original value in the dataset. The validated FAIRUrbTemp is a valuable resource for urban climate studies, with direct applications in validating microclimate models, assessing heat-health risks, and informing climate-adaptive urban planning.

Similar content being viewed by others

Leveraging peri-urban forests to reduce temperature and air pollution-related urban mortality in European cities

Article Open access 19 December 2025

Urbanization brings earlier onset of summertime compound heatwaves

Article Open access 24 April 2025

Planning cooler cities through integration of UAV thermal imagery and GIS in local climate zone studies

Article Open access 06 December 2025

Data availability

All data used in this study is publicly accessible online under the CC-BY licence via the following links: https://doi.org/10.48620/93247.

Code availability

The data processing and QC routines are written in R (v.4.3.1) programming language. The entire code used is freely available at GitHub (https://github.com/StarAmini/QC_URBNET) under the GNU General Public License v3.0.

References

  1. Ballester, J. et al. Heat-related mortality in Europe during the summer of 2022. Nature Medicine 29, 1857–1866, https://doi.org/10.1038/s41591-023-02419-z (2023).

    Google Scholar 

  2. Vicedo-Cabrera, A. M. et al. The burden of heat-related mortality attributable to recent human-induced climate change. Nature Climate Change 11, 492–500, https://doi.org/10.1038/s41558-021-01058-x (2021).

    Google Scholar 

  3. Huang, S., Xiao, X., Tian, T. & Che, Y. Seasonal influences on preferences for urban blue-green spaces: Integrating land surface temperature into the assessment of cultural ecosystem service value. Sustainable Cities and Society 620, 129384, https://doi.org/10.1016/j.scs.2024.105237 (2024).

    Google Scholar 

  4. Waidelich, P., Batibeniz, F., Rising, J., Kikstra, J. S. & Seneviratne, S. I. Climate damage projections beyond annual temperature. Nature Climate Change 14, 592–599, https://doi.org/10.1038/s41558-024-01990-8 (2024).

    Google Scholar 

  5. Lehnert, M. et al. Overheated children’s playgrounds in central european cities: The effects of surfaces and shading on thermal exposure during hot summer days. Urban Climate 55, 101873 (2024).

    Google Scholar 

  6. Aminzadeh, M., Or, D., Stevens, B., AghaKouchak, A. & Shokri, N. Upper bounds of maximum land surface temperatures in a warming climate and limits to plant growth. Earth’s future 11, e2023EF003755 (2023).

    Google Scholar 

  7. Büntgen, U. et al. Recent european drought extremes beyond common era background variability. Nature Geoscience 14, 190–196 (2021).

    Google Scholar 

  8. Stewart, I. D. & Oke, T. R. Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society 93, 1879–1900 (2012).

    Google Scholar 

  9. Kousis, I., Pigliautile, I. & Pisello, A. L. Intra-urban microclimate investigation in urban heat island through a novel mobile monitoring system. Scientific Reports 11, 9732 (2021).

    Google Scholar 

  10. World Meteorological Organization. Guide to Meteorological Instruments and Methods of Observation (CIMO Guide), 7th edn. (2018).

  11. Muller, C. L. et al. Crowdsourcing for climate and atmospheric sciences: Current status and future potential. International Journal of Climatology 35, 3185–3203, https://doi.org/10.1002/joc.4210 (2015).

    Google Scholar 

  12. Matese, A., Di Gennaro, S. F., Zaldei, A., Genesio, L. & Vaccari, F. P. A wireless sensor network for precision viticulture: the nav system. Computers and Electronics in Agriculture 69, 51–58, https://doi.org/10.1016/j.compag.2009.06.016 (2009).

    Google Scholar 

  13. Young, D. T., Chapman, L., Muller, C. L., Cai, X.-M. & Grimmond, C. S. B. A low-cost wireless temperature sensor: evaluation for use in environmental monitoring applications. Journal of Atmospheric and Oceanic Technology 31, 938–944, https://doi.org/10.1175/JTECH-D-13-00217.1 (2014).

    Google Scholar 

  14. Gubler, M. et al. Microclimatic gradients provide evidence for a glacial refugium for temperate trees in a sheltered hilly landscape of Northern Italy. Journal of Biogeography 45, 2564–2575, https://doi.org/10.1111/jbi.13426 (2018).

    Google Scholar 

  15. Gubler, M., Christen, A., Remund, J. & Brönnimann, S. Evaluation and application of a low-cost measurement network to study intra-urban temperature differences during summer 2018 in Bern, Switzerland. Urban Climate 37, 100817, https://doi.org/10.1016/j.uclim.2021.100817 (2021).

    Google Scholar 

  16. Croce, S. & Tondini, S. Fixed and Mobile Low-Cost Sensing Approaches for Microclimate Monitoring in Urban Areas: A Preliminary Study in the City of Bolzano (Italy). Smart Cities 5, 54–70, https://doi.org/10.3390/smartcities5010004 (2022).

    Google Scholar 

  17. Zhang, J., Gou, Z., Zhang, F. & Yu, R. The tree cooling pond effect and its influential factors: A pilot study in gold coast, australia. Nature-Based Solutions 3, 100058, https://doi.org/10.1016/j.nbsj.2023.100058 (2023).

    Google Scholar 

  18. Roantree, M., Lalic, B., Savic, S., Milosevic, D. & Scriney, M. Constructing a Searchable Knowledge Repository for FAIR Climate Data. http://arxiv.org/abs/2304.05944 (2023).

  19. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data 3, 160018, https://doi.org/10.1038/sdata.2016.18 (2016).

    Google Scholar 

  20. Meier, F., Fenner, D., Grassmann, T., Otto, M. & Scherer, D. Crowdsourcing air temperature from citizen weather stations for urban climate research. Urban Climate 19, 170–191, https://doi.org/10.1016/j.uclim.2017.01.006 (2017).

    Google Scholar 

  21. Hunziker, S. et al. Identifying, attributing, and overcoming common data quality issues of manned station observations. International Journal of Climatology 37, 4131–4145, https://doi.org/10.1002/joc.5037 (2017).

    Google Scholar 

  22. World Meteorological Organization. Report of the Eighth Session of the GCOS/WCRP Atmospheric Observation Panel for Climate (AOPC). Tech. Rep., World Meteorological Organization, Geneva, Switzerland (2002).

  23. Aguilar, E., Auer, I., Brunet, M., Peterson, T. & Wieringa, J. Guidelines on Climate Metadata and Homogenization. Tech. Rep., World Meteorological Organization, Geneva, Switzerland (2003).

  24. Plummer, N., Allsopp, T. & Lopez, J. A. Guidelines on climate observations networks and systems. Tech. Rep., World Meteorological Organization, Geneva, Switzerland (2003).

  25. World Meteorological Organization. Guide to Meteorological Instruments and Methods of Observation. Tech. Rep., World Meteorological Organization, Geneva, Switzerland (2008).

  26. Brunet, M. et al. Best Practice Guidelines for Climate Data and Metadata Formatting, Quality Control and Submission of the Copernicus Climate Change Service Data Rescue Service. Tech. Rep., Copernicus Climate Change Service Data Rescue Service https://doi.org/10.24381/kctk-8j22 (2020).

  27. Gubler, M. R., Burger, M. A. & Brönnimann, S. Urban climate bern: Meteorological and environmental observations in the city of bern. https://doi.org/10.48350/161882. BORIS Portal (Bern Open Repository and Information System). (2024).

  28. Erismann, G. T. M., Brönnimann, S. & Gubler, M. Assessment of the Urban Heat Island in Biel/Bienne. Master’s thesis, University of Bern (2025).

  29. Schlögl, S. et al. Automated detection of urban heat islands based on satellite imagery, digital surface models, and a low-cost sensor network. EGUsphere EGU21–14143, https://doi.org/10.5194/egusphere-egu21-14143 (2021).

  30. Ronda, R. J., Steeneveld, G. J., Heusinkveld, B. G., Attema, J. J. & Holtslag, A. A. M. Urban Finescale Forecasting Reveals Weather Conditions with Unprecedented Detail. Bulletin of the American Meteorological Society 98, 2675–2688, https://doi.org/10.1175/BAMS-D-16-0297.1 (2017).

    Google Scholar 

  31. Cai, X. et al. Hitemp: High density temperature and meteorological measurements within the urban birmingham conurbation. http://catalogue.ceda.ac.uk/uuid/5391a10e4f644229bc138f8a95ca42f1 Dataset published by Centre for Environmental Data Analysis (CEDA). (2016).

  32. Plein, M., Kersten, F., Zeeman, M. & Christen, A. Street-level weather station network in Freiburg, Germany: Station documentation (1.0), https://doi.org/10.5281/zenodo.12732552 (2024).

  33. Feigel, G. et al. High spatio-temporal and continuous monitoring of outdoor thermal comfort in urban areas: a generic and modular sensor network and outreach platform. Sustainable Cities and Society 119, 105991, https://doi.org/10.1016/j.scs.2024.105991 (2025).

    Google Scholar 

  34. Plein, M., Kersten, F., Zeeman, M. & Christen, A. Street-level weather station network in freiburg, germany: Station documentation (version 1.0). https://doi.org/10.5281/zenodo.12732552 Dataset published on Zenodo. (2024).

  35. Caluwaerts, S. et al. The urban climate of Ghent, Belgium: A case study combining a high-accuracy monitoring network with numerical simulations. Urban Climate 31, 100565, https://doi.org/10.1016/j.uclim.2019.100565 (2020).

    Google Scholar 

  36. Fenner, D., Meier, F., Scherer, D. & Polze, A. Spatial and temporal air temperature variability in Berlin, Germany, during the years 2001–2010. Urban Climate 10, 308–331, https://doi.org/10.1016/j.uclim.2014.02.004 (2014).

    Google Scholar 

  37. Meier, F., Holtmann, A., Otto, M. & Fenner, D. Uco berlin: Open climate data portal. https://uco.berlin/en/dataportal Dataset published by Urban Climate Observatory (UCO) Berlin. Chair of Climatology, Institute of Ecology, Technische Universität Berlin. (2024).

  38. Šećerov, I. B. et al. Progressing urban climate research using a high-density monitoring network system. Environmental Monitoring and Assessment 191, 89, https://doi.org/10.1007/s10661-019-7210-0 (2019).

    Google Scholar 

  39. Savić, S., Šećerov, I., Lalić, B., Nie, D. & Roantree, M. Air temperature and relative humidity datasets from an urban meteorological network in the city area of novi sad (serbia). Data in Brief, https://doi.org/10.5281/zenodo.8114905. (2023).

  40. Dubreuil, V., Foissard, X., Nabucet, J., Thomas, A. & Quénol, H. Fréquence et intensité desi^lots de chaleur à rennes: bilan de 16 années d’observations (2004–2019). Climatologie 17, 6, https://doi.org/10.1051/climat/202017006 (2020).

    Google Scholar 

  41. Dubreuil, V. Hourly temperature readings in rennes in 2018 (indigeo). https://portail.indigeo.fr/geonetwork/srv/eng/md.format.html?xsl=doi&uuid=11c9ae5f-6b1f-4518-b121-fa66efe4c92c, https://doi.org/10.35110/11c9ae5f-6b1f-4518-b121-fa66efe4c92c (2021).

  42. Alvi, U., Suomi, J. & Käyhkö, J. A cost-effective method for producing spatially continuous high-resolution air temperature information in urban environments. Urban Climate 42, 101123, https://doi.org/10.1016/j.uclim.2022.101123 (2022).

    Google Scholar 

  43. Anet, J., Burger, M., Spirig, C. & Suter, I. Improving urban temperature measurements and two applications. City and Environment Interactions 23, 100148, https://doi.org/10.1016/j.cacint.2024.100148 (2024).

    Google Scholar 

  44. Båserud, L. et al. Titan automatic spatial quality control of meteorological in-situ observations. Advances in Science and Research 17, 153–163, https://doi.org/10.5194/asr-17-153-2020 (2020).

    Google Scholar 

  45. Vergauwen, T. et al. MetObs - a Python toolkit for using non-traditional meteorological observations. Journal of Open Source Software 9, 5916, https://doi.org/10.21105/joss.05916 (2024).

    Google Scholar 

  46. Lund, R. B., Beaulieu, C., Killick, R., Lu, Q. & Shi, X. Good practices and common pitfalls in climate time series changepoint techniques: A review. Journal of Climate 36, 8041–8057, https://doi.org/10.1175/JCLI-D-22-0954.1 (2023).

    Google Scholar 

  47. Dandrifosse, S. et al. Automatic quality control of weather data for timely decisions in agriculture. Smart Agricultural Technology 8, 100445, https://doi.org/10.1016/j.atech.2024.100445 (2024).

    Google Scholar 

  48. Muñoz-Sabater, J. et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth system science data 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021 (2021).

    Google Scholar 

  49. Zhao, P. & He, Z. A first evaluation of era5-land reanalysis temperature product over the chinese qilian mountains. Frontiers in Earth Science 10, 907730, https://doi.org/10.3389/feart.2022.907730 (2022).

    Google Scholar 

  50. Zou, J. et al. Performance of air temperature from era5-land reanalysis in coastal urban agglomeration of southeast china. Science of The Total Environment 828, 154459, https://doi.org/10.1016/j.scitotenv.2022.154459 (2022).

    Google Scholar 

  51. CLIMA, THER and TE, W. Guide on the Global Data-Processing System. Tech. Rep., World Meteorological Organization, Geneva, Switzerland (1993).

  52. Beele, E., Reyniers, M., Aerts, R. & Somers, B. Quality control and correction method for air temperature data from a citizen science weather station network in Leuven, Belgium. Earth System Science Data 14, 4681–4717, https://doi.org/10.5194/essd-14-4681-2022 (2022).

    Google Scholar 

  53. Espinoza, J. C. et al. Revisiting wintertime cold air intrusions at the east of the andes: propagating features from subtropical argentina to peruvian amazon and relationship with large-scale circulation patterns. Climate dynamics 41, 1983–2002, https://doi.org/10.1007/s00382-012-1639-y (2013).

    Google Scholar 

  54. Meek, D. W. & Hatfield, J. L. Data quality checking for single station meteorological databases. Agricultural and Forest Meteorology 69, 85–109, https://doi.org/10.1016/0168-1923(94)90083-3 (1994).

    Google Scholar 

  55. Katavoutas, G., Founda, D., Varotsos, K. V. & Giannakopoulos, C. Diurnal Temperature Range and Its Response to Heat Waves in 16 European Cities–Current and Future Trends. Sustainability 15, 12715, https://doi.org/10.3390/su151712715 (2023).

    Google Scholar 

  56. Canton, J. & Dipankar, A. Climatological analysis of urban heat island effects in Swiss cities. International Journal of Climatology 44, 1549–1565, https://doi.org/10.1002/joc.8398 (2024).

    Google Scholar 

  57. Ng, E., Chen, L., Wang, Y. & Yuan, C. A study on the cooling effects of greening in a high-density city: An experience from hong kong. Building and environment 47, 256–271, https://doi.org/10.1016/j.buildenv.2011.07.014 (2012).

    Google Scholar 

  58. Napoly, A., Grassmann, T., Meier, F. & Fenner, D. Development and Application of a Statistically-Based Quality Control for Crowdsourced Air Temperature Data. Frontiers in Earth Science 6, 118, https://doi.org/10.3389/feart.2018.00118 (2018).

    Google Scholar 

  59. Amini, S. et al. FAIRUrbTemp dataset: street-level urban air temperature measurements across European networks. https://doi.org/10.48620/93247 BORIS Portal (Bern Open Repository and Information System). (2025).

  60. Chapman, L. et al. The Birmingham Urban Climate Laboratory: an open meteorological test bed and challenges of the smart city. Bulletin of the American Meteorological Society 96, 1545–1560, https://doi.org/10.1175/BAMS-D-13-00193.1 (2015).

    Google Scholar 

  61. Hubbard, K., Goddard, S., Sorensen, W., Wells, N. & Osugi, T. Performance of quality assurance procedures for an applied climate information system. Journal of Atmospheric and Oceanic Technology 22, 105–112, https://doi.org/10.1175/jtech-1657.1 (2005).

    Google Scholar 

  62. Estévez, J., Gavilán, P. & Giráldez, J. V. Guidelines on validation procedures for meteorological data from automatic weather stations. Journal of Hydrology 402, 144–154, https://doi.org/10.1016/j.jhydrol.2011.02.031 (2011).

    Google Scholar 

  63. Cerlini, P., Silvestri, L. & Saraceni, M. Quality control and gap-filling methods applied to hourly temperature observations over Central Italy. Meteorological Applications 27, e1913, https://doi.org/10.1002/met.1913 (2020).

    Google Scholar 

  64. Shekhar, S., Lu, C.-T. & Zhang, P. A unified approach to detecting spatial outliers. GeoInformatica 7, 139–166, https://doi.org/10.1023/A:1023455925009 (2003).

    Google Scholar 

  65. Fotheringham, A. S., Brunsdon, C. & Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships (John Wiley & Sons, Chichester, UK, 2002). EBook ISBN: 978-0-470-85525-6.

  66. sheoard, C. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 23rd ACM National Conference, ACM ’68, 517–524, https://doi.org/10.1145/800186.810616 (Association for Computing Machinery, New York, NY, USA, 1968).

  67. Hamada, A., Arakawa, O. & Yatagai, A. An automated quality control method for daily rain-gauge data. Global Environ. Res 15, 183–192 (2011).

    Google Scholar 

  68. Huerta, A., Serrano-Notivoli, R. & Brönnimann, S. SC-PREC4SA: A serially complete daily precipitation dataset for South America. Scientific Data 12, 1006, https://doi.org/10.1038/s41597-025-05312-1 (2025).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the European Cooperation in Science and Technology (COST) Grant CA20108, the Swiss National Science Foundation (IZCOZ0213362) and MeteoSwiss in the framework of GCOS Switzerland. We are grateful for the freely available global products: ERA5-Land climate reanalysis data from the Copernicus Climate Change Service (C3S) Climate Data Store at (https://cds.climate.copernicus.eu/). S.A. would like to thank colleagues at GiUB (Geographisches Institut, Universität Bern) and A. Jacobs and T. Vergauwen at the Ghent University-Department of Physics and Astronomy for help with formatting and quality control advice. Amsterdam Atmospheric Monitoring Supersite has been financially supported by the Amsterdam Institute for Advanced Metropolitan Solutions (AMS-Institute, VIR16002), by the municipality of Amsterdam (grant AAMS2.0), by NWO grants ESOCCS 027.012.103 and 864.14.007, and from the 4TU-program HERITAGE (HEat Robustness In relation To AGEing cities), funded by the High Tech for a Sustainable Future (HTSF) program of 4TU, the federation of the four technical universities in The Netherlands. We also thank Bert Heusinkveld (WUR) for his efforts on the AAMS measurement network. The authors are grateful for the availability of temperature data from the Bern network [https://boris.unibe.ch/161882/], the Berlin network [https://uco.berlin/en/dataportal/], the Birmingham network [https://catalogue.ceda.ac.uk/uuid/5391a10e4f644229bc138f8a95ca42f1/] and the Freiburg network [https://zenodo.org/records/12732552/].

Author information

Authors and Affiliations

  1. Oeschger Centre for Climate Change Research (OCCR), University of Bern, Bern, Switzerland

    Setareh Amini, Adrian Huerta, Jörg Franke, Yuri Brugnara, Moritz Gubler & Stefan Brönnimann

  2. Institute of Geography, University of Bern, Bern, Switzerland

    Setareh Amini, Adrian Huerta, Jörg Franke, Yuri Brugnara, Moritz Gubler & Stefan Brönnimann

  3. Department of Physics and Astronomy, Ghent University, Krijgslaan 281, 9000, Gent, Belgium

    Steven Caluwaerts

  4. Meteorological Institute of Belgium, Ringlaan 3, 1180, Ukkel, Belgium

    Steven Caluwaerts

  5. Umwelt- und Gesundheitsschutz (UGZ), Fachbereich Stadtklima, Zürich, Switzerland

    Julien Anet

  6. Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21000, Novi Sad, Serbia

    Stevan Savić

  7. Faculty of Natural Sciences and Mathematics, University of Banja Luka, Mladena Stojanovica 2, 78000, Banja Luka, Bosnia and Herzegovina

    Stevan Savić

  8. Institute for Lower Secondary Education, Bern University of Teacher Education, Bern, Switzerland

    Moritz Gubler

  9. Wageningen University, Meteorology and Air Quality Section, Wageningen, The Netherlands

    Gert-Jan Steeneveld

  10. Iniversity of Birmingham, Edgbaston, Birmingham B15 2TT, UK

    Lee Chapman

  11. Institue of Ecology, Technische Universität Berlin, Berlin, Germany

    Fred Meier

  12. LETG-UMR 6554, CNRS, University of Rennes 2, F-35000, Rennes, France

    Vincent Dubreuil

  13. Albert-Ludwigs-Universität Freiburg, Environmental Meteorology, Freiburg, Germany

    Andreas Christen & Matthias Zeeman

  14. Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia

    Branislava Lalić

  15. meteoblue AG, Basel, Switzerland

    Sebastian Schlögl

  16. University of Turku, Department of Geography and Geology, Turku, Finland

    Jukka Käyhkö

  17. Department of Computer Science, Lakehead University, Thunder Bay, Canada

    AmirMasoud Azadfar

Authors
  1. Setareh Amini
    View author publications

    Search author on:PubMed Google Scholar

  2. Adrian Huerta
    View author publications

    Search author on:PubMed Google Scholar

  3. Jörg Franke
    View author publications

    Search author on:PubMed Google Scholar

  4. Yuri Brugnara
    View author publications

    Search author on:PubMed Google Scholar

  5. Steven Caluwaerts
    View author publications

    Search author on:PubMed Google Scholar

  6. Julien Anet
    View author publications

    Search author on:PubMed Google Scholar

  7. Stevan Savić
    View author publications

    Search author on:PubMed Google Scholar

  8. Moritz Gubler
    View author publications

    Search author on:PubMed Google Scholar

  9. Gert-Jan Steeneveld
    View author publications

    Search author on:PubMed Google Scholar

  10. Lee Chapman
    View author publications

    Search author on:PubMed Google Scholar

  11. Fred Meier
    View author publications

    Search author on:PubMed Google Scholar

  12. Vincent Dubreuil
    View author publications

    Search author on:PubMed Google Scholar

  13. Andreas Christen
    View author publications

    Search author on:PubMed Google Scholar

  14. Matthias Zeeman
    View author publications

    Search author on:PubMed Google Scholar

  15. Branislava Lalić
    View author publications

    Search author on:PubMed Google Scholar

  16. Sebastian Schlögl
    View author publications

    Search author on:PubMed Google Scholar

  17. Jukka Käyhkö
    View author publications

    Search author on:PubMed Google Scholar

  18. AmirMasoud Azadfar
    View author publications

    Search author on:PubMed Google Scholar

  19. Stefan Brönnimann
    View author publications

    Search author on:PubMed Google Scholar

Contributions

S.A. processed the data and undertook quality control of the data with A.H. and J.F. S.A. collected raw observed data, and all the coauthors helped in sharing their datasets. S.A. wrote the first draft of the manuscript. All the authors were involved in discussing the quality control method and results, and all reviewed and contributed to writing the manuscript.

Corresponding author

Correspondence to Setareh Amini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amini, S., Huerta, A., Franke, J. et al. Comprehensive compilation and quality assessment of street-level urban air temperature measurements across European networks. Sci Data (2026). https://doi.org/10.1038/s41597-026-06804-4

Download citation

  • Received: 01 September 2025

  • Accepted: 02 February 2026

  • Published: 14 February 2026

  • DOI: https://doi.org/10.1038/s41597-026-06804-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims and scope
  • Editors & Editorial Board
  • Journal Metrics
  • Policies
  • Open Access Fees and Funding
  • Calls for Papers
  • Contact

Publish with us

  • Submission Guidelines
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Data (Sci Data)

ISSN 2052-4463 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene