Abstract
Mountain regions experienced repeated glacial expansions and retreats during the Quaternary, shaping landscapes, ecosystems, and regional climates. While numerous reconstructions exist for individual mountain glaciers, global geodatabases remain scarce and rarely updated to reflect the latest observations. Here, we present GLACIMONTIS, a global geodatabase of maximum recorded areal extents of mountain glaciers at local Last Glacial Maximum, spanning 57-14 kyr BP. Our synthesis integrates reconstructions from 209 studies across 271 mountain ranges worldwide, compiling 15,014 individual glacier reconstructions, including 8,809 reconstructions compiled for the first time in a global geodatabase. Our work updates knowledge in 135 mountain ranges and highlights research gaps in 71 others. GLACIMONTIS represents the most comprehensive and up-to-date synthesis of mountain glacier areal extent at the global and local Last Glacial Maximum, providing spatial boundaries for refining climate-glacier modeling and delineating paleoecological reconstructions, and a framework for identifying regional research gaps. GLACIMONTIS advances Quaternary science by enhancing access to paleoglacier reconstructions and fostering interdisciplinary research in and across mountains worldwide.
Similar content being viewed by others
Data availability
GLACIMONTIS geodatabase, along with the reference list of all the reconstructed paleoglacier data used to compose it, can be found at https://doi.org/10.5281/zenodo.15600659102.
Code availability
No custom scripts were used in this study. All data processing was carried out using ESRI ArcGIS Pro 3.2.0. Geoprocessing tools and workflows used are described in the Methods section.
References
Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the Earth’s Orbit: Pacemaker of the Ice Ages: For 500,000 years, major climatic changes have followed variations in obliquity and precession. Science 194, 1121–1132, https://doi.org/10.1126/science.194.4270.1121 (1976).
Schlüchter, C. The Swiss glacial record – a schematic summary. in Developments in Quaternary Sciences 2 413–418, https://doi.org/10.1016/S1571-0866(04)80092-7 (Elsevier, 2004).
Owen, L. A. & Dortch, J. M. Nature and timing of Quaternary glaciation in the Himalayan–Tibetan orogen. Quaternary Science Reviews 88, 14–54, https://doi.org/10.1016/j.quascirev.2013.11.016 (2014).
Molnar, P. & England, P. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature 346, 29–34, https://doi.org/10.1038/346029a0 (1990).
Hallet, B., Hunter, L. & Bogen, J. Rates of erosion and sediment evacuation by glaciers: A review of field data and their implications. Global and Planetary Change 12, 213–235, https://doi.org/10.1016/0921-8181(95)00021-6 (1996).
Brozović, N., Burbank, D. W. & Meigs, A. J. Climatic Limits on Landscape Development in the Northwestern Himalaya. Science 276, 571–574, https://doi.org/10.1126/science.276.5312.571 (1997).
Mitchell, S. G. & Montgomery, D. R. Influence of a glacial buzzsaw on the height and morphology of the Cascade Range in central Washington State, USA. Quaternary Research 65, 96–107, https://doi.org/10.1016/j.yqres.2005.08.018 (2006).
Egholm, D. L., Nielsen, S. B., Pedersen, V. K. & Lesemann, J.-E. Glacial effects limiting mountain height. Nature 460, 884–887, https://doi.org/10.1038/nature08263 (2009).
Herman, F. et al. Erosion by an Alpine glacier. Science 350, 193–195, https://doi.org/10.1126/science.aab2386 (2015).
Herman, F. et al. Worldwide acceleration of mountain erosion under a cooling climate. Nature 504, 423–426, https://doi.org/10.1038/nature12877 (2013).
Hall, A. M. & Kleman, J. Glacial and periglacial buzzsaws: fitting mechanisms to metaphors. Quaternary Research 81, 189–192, https://doi.org/10.1016/j.yqres.2013.10.007 (2014).
Hoorn, C. et al. The Amazon at sea: Onset and stages of the Amazon River from a marine record, with special reference to Neogene plant turnover in the drainage basin. Global and Planetary Change 153, 51–65, https://doi.org/10.1016/j.gloplacha.2017.02.005 (2017).
Flantua, S. G. A., O’Dea, A., Onstein, R. E., Giraldo, C. & Hooghiemstra, H. The flickering connectivity system of the north Andean páramos. Journal of Biogeography 46, 1808–1825, https://doi.org/10.1111/jbi.13607 (2019).
Shaw, T. E., Buri, P., McCarthy, M., Miles, E. S. & Pellicciotti, F. Local Controls on Near‐Surface Glacier Cooling Under Warm Atmospheric Conditions. Journal of Geophysical Research: Atmospheres 129, e2023JD040214, https://doi.org/10.1029/2023JD040214 (2024).
Salerno, F. et al. Local cooling and drying induced by Himalayan glaciers under global warming. Nature Geoscience 16, 1120–1127, https://doi.org/10.1038/s41561-023-01331-y (2023).
Gillespie, A. & Molnar, P. Asynchronous maximum advances of mountain and continental glaciers. Reviews of Geophysics 33, 311–364, https://doi.org/10.1029/95RG00995 (1995).
Petherick, L. M. et al. An extended last glacial maximum in the Southern Hemisphere: A contribution to the SHeMax project. Earth-Science Reviews 231, 104090, https://doi.org/10.1016/j.earscirev.2022.104090 (2022).
Clark, P. U. et al. The Last Glacial Maximum. Science 325, 710–714, https://doi.org/10.1126/science.1172873 (2009).
Tierney, J. E. et al. Glacial cooling and climate sensitivity revisited. Nature 584, 569–573, https://doi.org/10.1038/s41586-020-2617-x (2020).
Annan, J. D., Hargreaves, J. C. & Mauritsen, T. A new global surface temperature reconstruction for the Last Glacial Maximum. Climate of the Past 18, 1883–1896, https://doi.org/10.5194/cp-18-1883-2022 (2022).
Seltzer, A. M., Blard, P.-H., Sherwood, S. C. & Kageyama, M. Terrestrial amplification of past, present, and future climate change. Sci. Adv. 9, eadf8119, https://doi.org/10.1126/sciadv.adf8119 (2023).
Bentley, M. J. et al. A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum. Quaternary Science Reviews 100, 1–9, https://doi.org/10.1016/j.quascirev.2014.06.025 (2014).
Leger, T. P. M. et al. A Greenland-wide empirical reconstruction of paleo ice sheet retreat informed by ice extent markers: PaleoGrIS version 1.0. Climate of the Past 20, 701–755, https://doi.org/10.5194/cp-20-701-2024 (2024).
Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J. & Svendsen, J. I. The last Eurasian ice sheets – a chronological database and time‐slice reconstruction, DATED‐1. Boreas 45, 1–45, https://doi.org/10.1111/bor.12142 (2016).
Mark, B. G. et al. Tropical snowline changes at the last glacial maximum: a global assessment. Quaternary International 138, 168–201, https://doi.org/10.1016/j.quaint.2005.02.012 (2005).
Prentice, M. L., Hope, G. S., Maryunani, K. & Peterson, J. A. An evaluation of snowline data across New Guinea during the last major glaciation, and area-based glacier snowlines in the Mt. Jaya region of Papua, Indonesia, during the Last Glacial Maximum. Quaternary International 138–139, 93–117, https://doi.org/10.1016/j.quaint.2005.02.008 (2005).
Smith, J. A., Mark, B. G. & Rodbell, D. T. The timing and magnitude of mountain glaciation in the tropical Andes. Journal of Quaternary Science 23, 609–634, https://doi.org/10.1002/jqs.1224 (2008).
Mark, B. G. & Osmaston, H. A. Quaternary glaciation in Africa: key chronologies and climatic implications. Journal of Quaternary Science 23, 589–608, https://doi.org/10.1002/jqs.1222 (2008).
Hughes, P. D. & Woodward, J. C. Quaternary glaciation in the Mediterranean mountains: a new synthesis. Geological Society, London, Special Publications 433, 1–23, https://doi.org/10.1144/SP433.14 (2017).
Angel, I., Guzman, O. & Carcaillet, J. Pleistocene Glaciations in the Northern Tropical Andes, South America (Venezuela, Colombia and Ecuador). Cuadernos de Investigación Geográfica 43, 571–590, https://doi.org/10.18172/cig.3202 (2017).
Palacios, D. et al. The deglaciation of the Americas during the Last Glacial Termination. Earth-Science Reviews 203, 103113, https://doi.org/10.1016/j.earscirev.2020.103113 (2020).
Thackray, G. D., Owen, L. A. & Yi, C. Timing and nature of late Quaternary mountain glaciation. Journal of Quaternary Science 23, 503–508, https://doi.org/10.1002/jqs.1225 (2008).
Haywood, A. M. et al. What can Palaeoclimate Modelling do for you? Earth Systems and Environment 3, 1–18, https://doi.org/10.1007/s41748-019-00093-1 (2019).
Schönswetter, P., Stehlik, I., Holderegger, R. & Tribsch, A. Molecular evidence for glacial refugia of mountain plants in the European Alps. Molecular Ecology 14, 3547–3555, https://doi.org/10.1111/j.1365-294X.2005.02683.x (2005).
Flantua, S. G. A. et al. Snapshot isolation and isolation history challenge the analogy between mountains and islands used to understand endemism. Global Ecology and Biogeography 29, 1651–1673, https://doi.org/10.1111/geb.13155 (2020).
Ehlers, J. & Gibbard, P. L. Quaternary Glaciations: Extent and Chronology. (Elsevier, Amsterdam, 2004).
Quaternary Glaciations - Extent and Chronology: A Closer Look. (Elsevier, Amsterdam; Boston, 2011).
Burkhalter, R. & Bini, A. cartographe. Die Schweiz während des letzteiszeitlichen Maximums (LGM) = La Suisse durant le dernier maximum glaciaire = La Svizzera durante l’ultimo massimo glaciale = Switzerland during the last glacial maximum. (Bundesamt für Landestopografie Swisstopo, Wabern, 2009).
Kaufman, D. S., Young, N. E., Briner, J. P. & Manley, W. F. Alaska Palaeo-Glacier Atlas (Version 2). in Developments in Quaternary Sciences 15 427–445. https://doi.org/10.1016/B978-0-444-53447-7.00033-7 (Elsevier, 2011).
Barr, I. D. & Clark, C. D. Late Quaternary glaciations in Far NE Russia; combining moraines, topography and chronology to assess regional and global glaciation synchrony. Quaternary Science Reviews 53, 72–87, https://doi.org/10.1016/j.quascirev.2012.08.004 (2012).
Laabs, B. J. C., Licciardi, J. M., Leonard, E. M., Munroe, J. S. & Marchetti, D. W. Updated cosmogenic chronologies of Pleistocene mountain glaciation in the western United States and associated paleoclimate inferences. Quaternary Science Reviews 242, 106427, https://doi.org/10.1016/j.quascirev.2020.106427 (2020).
Iberia, Land of Glaciers: How the Mountains Were Shaped by Glaciers. (Elsevier, Amsterdam, Netherlands; Cambridge, MA, 2022).
Kłapyta, P., Zasadni, J. & Mîndrescu, M. Late Pleistocene glaciation in the Eastern Carpathians – a regional overview. CATENA 224, 106994, https://doi.org/10.1016/j.catena.2023.106994 (2023).
North Dakota State University, Laabs, B., Anderson, L., Licciardi, J. & Tulenko, J. Developing A Geospatial Database of Late Pleistocene Mountain Glaciers in The Western United States. in 387976. https://doi.org/10.1130/abs/2023RM-387976 (2023).
Davies, B. J. et al. The evolution of the Patagonian Ice Sheet from 35 ka to the present day (PATICE). Earth-Science Reviews 204, 103152, https://doi.org/10.1016/j.earscirev.2020.103152 (2020).
Dalton, A. S. et al. Deglaciation of the north American ice sheet complex in calendar years based on a comprehensive database of chronological data: NADI-1. Quaternary Science Reviews 321, 108345, https://doi.org/10.1016/j.quascirev.2023.108345 (2023).
Stroeven, A. P. et al. Deglaciation of Fennoscandia. Quaternary Science Reviews 147, 91–121, https://doi.org/10.1016/j.quascirev.2015.09.016 (2016).
Clark, C. D. et al. Growth and retreat of the last British–Irish Ice Sheet, 31 000 to 15 000 years ago: the BRITICE‐CHRONO reconstruction. Boreas 51, 699–758, https://doi.org/10.1111/bor.12594 (2022).
Hendrickx, H., Jacob, M., Frankl, A. & Nyssen, J. Glacial and periglacial geomorphology and its paleoclimatological significance in three North Ethiopian Mountains, including a detailed geomorphological map. Geomorphology 246, 156–167, https://doi.org/10.1016/j.geomorph.2015.05.005 (2015).
Carrasco, R. M., Pedraza, J., Domínguez-Villar, D., Villa, J. & Willenbring, J. K. The plateau glacier in the Sierra de Béjar (Iberian Central System) during its maximum extent. Reconstruction and chronology. Geomorphology 196, 83–93, https://doi.org/10.1016/j.geomorph.2012.03.019 (2013).
Lukas, S. Morphostratigraphic principles in glacier reconstruction -a perspective from the British Younger Dryas. Progress in Physical Geography: Earth and Environment 30, 719–736, https://doi.org/10.1177/0309133306071955 (2006).
Pearce, D., Ely, J., Barr, I. & Boston, C. Chapter 3.4.9 Glacier reconstruction in Geomorphological Techniques. in Geomorphological Techniques 1–16 (British Society for Geomorphology, 2017).
James, W. H. M. & Carrivick, J. L. Automated modelling of spatially-distributed glacier ice thickness and volume. Computers & Geosciences 92, 90–103, https://doi.org/10.1016/j.cageo.2016.04.007 (2016).
James, W. H. M., Carrivick, J. L., Quincey, D. J. & Glasser, N. F. A geomorphology based reconstruction of ice volume distribution at the Last Glacial Maximum across the Southern Alps of New Zealand. Quaternary Science Reviews 219, 20–35, https://doi.org/10.1016/j.quascirev.2019.06.035 (2019).
Li, Y. PalaeoIce: An automated method to reconstruct palaeoglaciers using geomorphic evidence and digital elevation models. Geomorphology 421, 108523, https://doi.org/10.1016/j.geomorph.2022.108523 (2023).
Pellitero, R. et al. GlaRe, a GIS tool to reconstruct the 3D surface of palaeoglaciers. Computers & Geosciences 94, 77–85, https://doi.org/10.1016/j.cageo.2016.06.008 (2016).
Plummer, M. A. & Phillips, F. M. A 2-D numerical model of snow/ice energy balance and ice flow for paleoclimatic interpretation of glacial geomorphic features. Quaternary Science Reviews 22, 1389–1406, https://doi.org/10.1016/S0277-3791(03)00081-7 (2003).
Leger, T. P. M. et al. A data-consistent model of the last glaciation in the Alps achieved with physics-driven AI. Nature Communications 16, 848, https://doi.org/10.1038/s41467-025-56168-3 (2025).
Rocamora, I., Ienco, D. & Ferry, M. Multi-source deep-learning approach for automatic geomorphological mapping: the case of glacial moraines. Geo-spatial Information Science 27, 1747–1766, https://doi.org/10.1080/10095020.2023.2292587 (2024).
Sharp, R. P., Allen, C. R. & Meier, M. F. Pleistocene glaciers on southern California mountains. American Journal of Science 257, 81–94, https://doi.org/10.2475/ajs.257.2.81 (1959).
Sharp, R. P. Pleistocene glaciation in the Trinity Alps of northern California. American Journal of Science 258, 305–340, https://doi.org/10.2475/ajs.258.5.305 (1960).
Emmer, A. et al. Glacier retreat and associated processes since the Last Glacial Maximum in the Lejiamayu valley, Peruvian Andes. Journal of South American Earth Sciences 109, 103254, https://doi.org/10.1016/j.jsames.2021.103254 (2021).
Kłapyta, P., Mîndrescu, M. & Zasadni, J. Geomorphological record and equilibrium line altitude of glaciers during the last glacial maximum in the Rodna Mountains (eastern Carpathians). Quaternary Research 100, 1–20, https://doi.org/10.1017/qua.2020.90 (2021).
Kamleitner, S. et al. The Ticino-Toce glacier system (Swiss-Italian Alps) in the framework of the Alpine Last Glacial Maximum. Quaternary Science Reviews 279, 107400, https://doi.org/10.1016/j.quascirev.2022.107400 (2022).
Balco, G. Technical note: A prototype transparent-middle-layer data management and analysis infrastructure for cosmogenic-nuclide exposure dating. Geochronology 2, 169–175, https://doi.org/10.5194/gchron-2-169-2020 (2020).
Heyman, J. A global compilation of glacial 10Be and 26Al data. ExPage (Github Pages).
Yokoyama, Y., Lambeck, K., De Deckker, P., Johnston, P. & Fifield, L. K. Timing of the Last Glacial Maximum from observed sea-level minima. Nature 406, 713–716, https://doi.org/10.1038/35021035 (2000).
Mix, A. Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quaternary Science Reviews 20, 627–657, https://doi.org/10.1016/S0277-3791(00)00145-1 (2001).
Clark, P. U. & Mix, A. C. Ice sheets and sea level of the Last Glacial Maximum. Quaternary Science Reviews 21, 1–7, https://doi.org/10.1016/S0277-3791(01)00118-4 (2002).
Hughes, P. D., Gibbard, P. L. & Ehlers, J. Timing of glaciation during the last glacial cycle: evaluating the concept of a global ‘Last Glacial Maximum’ (LGM). Earth-Science Reviews 125, 171–198, https://doi.org/10.1016/j.earscirev.2013.07.003 (2013).
Hughes, P. D. & Gibbard, P. L. Evaluating the Concept of a Global “Last Glacial Maximum” (LGM): A Terrestrial Perspective. in STRATI 2013 (eds. Rocha, R., Pais, J., Kullberg, J. C. & Finney, S.) 943–945. https://doi.org/10.1007/978-3-319-04364-7_177 (Springer International Publishing, Cham, 2014).
Lisiecki, L. E. & Raymo, M. E. A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ 18 O records. Paleoceanography 20, 2004PA001071, https://doi.org/10.1029/2004PA001071 (2005).
CLIMAP Project Members. The Surface of the Ice-Age Earth: Quantitative geologic evidence is used to reconstruct boundary conditions for the climate 18,000 years ago. Science 191, 1131–1137, https://doi.org/10.1126/science.191.4232.1131 (1976).
Cline, R. M. L. et al. The Last Interglacial Ocean. Quaternary Research 21, 123–224, https://doi.org/10.1016/0033-5894(84)90098-X (1984).
Peltier, W. R. & Fairbanks, R. G. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews 25, 3322–3337, https://doi.org/10.1016/j.quascirev.2006.04.010 (2006).
Hughes, P. D. & Gibbard, P. L. A stratigraphical basis for the Last Glacial Maximum (LGM). Quaternary International 383, 174–185, https://doi.org/10.1016/j.quaint.2014.06.006 (2015).
Shakun, J. D. & Carlson, A. E. A global perspective on Last Glacial Maximum to Holocene climate change. Quaternary Science Reviews 29, 1801–1816, https://doi.org/10.1016/j.quascirev.2010.03.016 (2010).
Smith, J. A., Seltzer, G. O., Farber, D. L., Rodbell, D. T. & Finkel, R. C. Early Local Last Glacial Maximum in the Tropical Andes. Science 308, 678–681, https://doi.org/10.1126/science.1107075 (2005).
Blard, P.-H. et al. Late local glacial maximum in the Central Altiplano triggered by cold and locally-wet conditions during the paleolake Tauca episode (17–15ka, Heinrich 1). Quaternary Science Reviews 28, 3414–3427, https://doi.org/10.1016/j.quascirev.2009.09.025 (2009).
Incera Sañudo, L., Rodríguez-Rodríguez, L. & Jiménez-Sánchez, M. Reconstrucción topográfica del paleoglaciar del valle del río Miera (Cantabria) durante el último máximo glaciar local. Geogaceta 74, 51–54, https://doi.org/10.55407/geogaceta98266 (2023).
Clapperton, C. M. Quaternary glaciations in the southern hemisphere: An overview. Quaternary Science Reviews 9, 299–304, https://doi.org/10.1016/0277-3791(90)90024-5 (1990).
Esri. ArcGIS Pro. (2024).
Bini, A. Die Schweiz während des letzteiszeitlichen Maximums (LGM): = La Suisse durant le dernier maximum glaciaire (2009).
Lee, E. et al. Palaeoglaciation in the low latitude, low elevation tropical Andes, northern Peru. Frontiers in Earth Science 10, 838826 (2022).
Barrows, T. T., Stone, J. O., Fifield, L. K. & Cresswell, R. G. The timing of the Last Glacial Maximum in Australia. Quaternary Science Reviews 21, 159–173, https://doi.org/10.1016/S0277-3791(01)00109-3 (2002).
agency), W. F. P. (United N. World Administrative Boundaries - Countries and Territories. (2019).
Batchelor, C. L. et al. The configuration of Northern Hemisphere ice sheets through the Quaternary. Nature Communications 10, 3713, https://doi.org/10.1038/s41467-019-11601-2 (2019).
Batchelor, C., Manica, A., Murton, D. & Krapp, M. The configuration of Northern Hemisphere ice sheets through the Quaternary. https://doi.org/10.17605/OSF.IO/7JEN3 (2019).
NOAA National Centers for Environmental Information. ETOPO 2022 30 Arc-Second Global Relief Model. https://doi.org/10.25921/FD45-GT74 (2022).
Snethlage, M. A. et al. GMBA Mountain Inventory v2: A hierarchical inventory of the world’s mountains for global comparative mountain science. 322mb GMBA-EarthEnv https://doi.org/10.48601/EARTHENV-T9K2-1407 (2021).
Snethlage, M. A. et al. A hierarchical inventory of the world’s mountains for global comparative mountain science. Scientific Data 9, 149, https://doi.org/10.1038/s41597-022-01256-y (2022).
Benn, D. I. & Hulton, N. R. J. An ExcelTM spreadsheet program for reconstructing the surface profile of former mountain glaciers and ice caps. Computers & Geosciences 36, 605–610, https://doi.org/10.1016/j.cageo.2009.09.016 (2010).
Ferk, M., Gabrovec, M., Komac, B., Zorn, M. & Stepišnik, U. Pleistocene glaciation in Mediterranean Slovenia. Geological Society, London, Special Publications 433, 179–191, https://doi.org/10.1144/SP433.2 (2017).
Kuhle, M. The Last Glacial Maximum (LGM) glacier cover of the Aconcagua group and adjacent massifs in the Mendoza Andes (South America). in Developments in Quaternary Sciences 2 75–82. https://doi.org/10.1016/S1571-0866(04)80113-1 (Elsevier, 2004).
Umer, M., Kebede, S. & Osmaston, H. Quaternary glacial activity on the Ethiopian mountains. in Developments in Quaternary Sciences 2 171–174. https://doi.org/10.1016/S1571-0866(04)80122-2 (Elsevier, 2004).
Lachniet, M. S. & Vazquez-Selem, L. Last Glacial Maximum equilibrium line altitudes in the circum-Caribbean (Mexico, Guatemala, Costa Rica, Colombia, and Venezuela). Quaternary International 138–139, 129–144, https://doi.org/10.1016/j.quaint.2005.02.010 (2005).
Prentice, M. L., Hope, G. S., Peterson, J. A. & Barrows, T. T. The Glaciation of the South-East Asian Equatorial Region. in Developments in Quaternary Sciences 15 1023–1036. https://doi.org/10.1016/B978-0-444-53447-7.00073-8 (Elsevier, 2011).
Serrano, E., González-Trueba, J. J. & González-García, M. Mountain glaciation and paleoclimate reconstruction in the Picos de Europa (Iberian Peninsula, SW Europe). Quaternary Research 78, 303–314, https://doi.org/10.1016/j.yqres.2012.05.016 (2012).
Hannah, G., Hughes, P. D. & Gibbard, P. L. Pleistocene plateau ice fields in the High Atlas, Morocco. Geological Society, London, Special Publications 433, 25–53, https://doi.org/10.1144/SP433.12 (2017).
Pope, R. J. J. et al. Long-term glacial and fluvial system coupling in southern Greece and evidence for glaciation during Marine Isotope Stage 16. Quaternary Science Reviews 317, 108239, https://doi.org/10.1016/j.quascirev.2023.108239 (2023).
Heyman, J. et al. Palaeoglaciology of Bayan Har Shan, NE Tibetan Plateau: exposure ages reveal a missing LGM expansion. Quaternary Science Reviews 30, 1988–2001, https://doi.org/10.1016/j.quascirev.2011.05.002 (2011).
Lima, C. L. et al. Glacimontis. Zenodo https://doi.org/10.5281/zenodo.15600659 (2025).
Dahms, D. E. Glacial limits in the middle and southern Rocky mountains, U.S.A., south of the Yellowstone ice cap. in Developments in Quaternary Sciences 2 275–288. https://doi.org/10.1016/S1571-0866(04)80203-3 (Elsevier, 2004).
Acknowledgements
We want to thank the paleoglacier community for providing their data in open-access format: Robin Blomdin, Elena Serra, Piotr Kłapyta, William James, Bethan Davies; Yan Qing, Jerzy Zasadni, Gonçalo Vieira and Christine Batchelor. As for the researchers who willingly contributed and shared their data to our requests, making this research possible: Ethan Lee, Alice Doughty, Alexander Gross, Hanne Hendrickx, Sarah Kamleitner, Nestor Campos, Adriano Ribolini, Jorge Luis Ceballos, Jürgen Mey, Iestyn Barr, Zsófia Ruszkiczay-Rüdige, Lukas Retti, Shakil Romshoo, Magali Delmas, Naki Akçar, Edgar Figueira, Alejandro Gómez-Pazo, Qian Zhang, Adam Emmer, Felix Hofmann, Rosa Carrasco, Manja Žebre, Aleksandar Petrović, Javier Pedraza, Laro Incera Sañudo, Matias Gallardo, Ádám Ignéczi, Javier Santos-González, José María Redondo-Vega, Dmitry Ganyushkin. We also thank the Western US Paleoglacier Working Group and the Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM) for providing their compilation of paleoglaciers in the Western U.S. and in Colombia, respectively. We specifically acknowledge the pioneering contributions of Jürgen Ehlers, Phillip L. Gibbard, Phillip D. Hughes, and all the book chapter authors in the Quaternary glaciations: extent and chronology and Quaternary glaciations – extent and chronology: a closer look, who first undertook this effort and provided an impressive geodatabase nearly 20 years ago. Finally, we would like to thank Eline S. Rentier (UiB) for her comments on earlier versions of the manuscript. A.C.L.N. and S.G.A.F. acknowledge financial support from Trond Mohn Research Foundation (TMF) and the University of Bergen for the startup grant ‘TMS2022STG03’ to S.G.A. Flantua. Funding for open access funding publishing was supported by the University of Bergen. M.M. acknowledges support by the Johannes Amos Comenius Programme (P JAC), project No. CZ.02.01.01/00/22_008/0004605, Natural and anthropogenic georisks.
Funding
Open access funding provided by University of Bergen.
Author information
Authors and Affiliations
Contributions
A.C.L. data acquisition, processing, validation, writing-original draft, proof reading. A.L.C.H. project conception, data acquisition, writing, proof reading. B.J.C.L. data acquisition, writing, proof reading. H.D. project conception, data acquisition, writing, proof reading. I.B. data acquisition, processing, writing, proof reading. M.M. project conception, data acquisition, writing, proof reading. S.G.A.F. project conception, data acquisition, writing-original draft, proof reading, supervision.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Lima, A.C., Dulfer, H.E., Hughes, A.L.C. et al. Mountain glacier extents at the Last Glacial Maximum. Sci Data (2026). https://doi.org/10.1038/s41597-026-06841-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41597-026-06841-z


