Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Data
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific data
  3. data descriptors
  4. article
Mountain glacier extents at the Last Glacial Maximum
Download PDF
Download PDF
  • Data Descriptor
  • Open access
  • Published: 17 February 2026

Mountain glacier extents at the Last Glacial Maximum

  • Augusto C. Lima  ORCID: orcid.org/0000-0002-4242-77101,
  • Helen E. Dulfer2 nAff3,
  • Anna L. C. Hughes  ORCID: orcid.org/0000-0001-8584-5202 nAff8,
  • Martin Margold  ORCID: orcid.org/0000-0001-5834-850X4,
  • Iestyn Barr  ORCID: orcid.org/0000-0002-9066-87385,
  • Benjamin J. C. Laabs  ORCID: orcid.org/0000-0001-8825-26726 nAff9 &
  • …
  • Suzette G. A. Flantua  ORCID: orcid.org/0000-0001-6526-30377 

Scientific Data , Article number:  (2026) Cite this article

  • 209 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cryospheric science
  • Palaeoclimate

Abstract

Mountain regions experienced repeated glacial expansions and retreats during the Quaternary, shaping landscapes, ecosystems, and regional climates. While numerous reconstructions exist for individual mountain glaciers, global geodatabases remain scarce and rarely updated to reflect the latest observations. Here, we present GLACIMONTIS, a global geodatabase of maximum recorded areal extents of mountain glaciers at local Last Glacial Maximum, spanning 57-14 kyr BP. Our synthesis integrates reconstructions from 209 studies across 271 mountain ranges worldwide, compiling 15,014 individual glacier reconstructions, including 8,809 reconstructions compiled for the first time in a global geodatabase. Our work updates knowledge in 135 mountain ranges and highlights research gaps in 71 others. GLACIMONTIS represents the most comprehensive and up-to-date synthesis of mountain glacier areal extent at the global and local Last Glacial Maximum, providing spatial boundaries for refining climate-glacier modeling and delineating paleoecological reconstructions, and a framework for identifying regional research gaps. GLACIMONTIS advances Quaternary science by enhancing access to paleoglacier reconstructions and fostering interdisciplinary research in and across mountains worldwide.

Similar content being viewed by others

The Glacier Inventory Dataset of the Qilian Mountains for the Period 2018–2019

Article Open access 11 February 2026

Globally scalable glacier mapping by deep learning matches expert delineation accuracy

Article Open access 02 January 2025

Mountain glaciers recouple to atmospheric warming over the twenty-first century

Article Open access 10 October 2025

Data availability

GLACIMONTIS geodatabase, along with the reference list of all the reconstructed paleoglacier data used to compose it, can be found at https://doi.org/10.5281/zenodo.15600659102.

Code availability

No custom scripts were used in this study. All data processing was carried out using ESRI ArcGIS Pro 3.2.0. Geoprocessing tools and workflows used are described in the Methods section.

References

  1. Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the Earth’s Orbit: Pacemaker of the Ice Ages: For 500,000 years, major climatic changes have followed variations in obliquity and precession. Science 194, 1121–1132, https://doi.org/10.1126/science.194.4270.1121 (1976).

    Google Scholar 

  2. Schlüchter, C. The Swiss glacial record – a schematic summary. in Developments in Quaternary Sciences 2 413–418, https://doi.org/10.1016/S1571-0866(04)80092-7 (Elsevier, 2004).

  3. Owen, L. A. & Dortch, J. M. Nature and timing of Quaternary glaciation in the Himalayan–Tibetan orogen. Quaternary Science Reviews 88, 14–54, https://doi.org/10.1016/j.quascirev.2013.11.016 (2014).

    Google Scholar 

  4. Molnar, P. & England, P. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature 346, 29–34, https://doi.org/10.1038/346029a0 (1990).

    Google Scholar 

  5. Hallet, B., Hunter, L. & Bogen, J. Rates of erosion and sediment evacuation by glaciers: A review of field data and their implications. Global and Planetary Change 12, 213–235, https://doi.org/10.1016/0921-8181(95)00021-6 (1996).

    Google Scholar 

  6. Brozović, N., Burbank, D. W. & Meigs, A. J. Climatic Limits on Landscape Development in the Northwestern Himalaya. Science 276, 571–574, https://doi.org/10.1126/science.276.5312.571 (1997).

    Google Scholar 

  7. Mitchell, S. G. & Montgomery, D. R. Influence of a glacial buzzsaw on the height and morphology of the Cascade Range in central Washington State, USA. Quaternary Research 65, 96–107, https://doi.org/10.1016/j.yqres.2005.08.018 (2006).

    Google Scholar 

  8. Egholm, D. L., Nielsen, S. B., Pedersen, V. K. & Lesemann, J.-E. Glacial effects limiting mountain height. Nature 460, 884–887, https://doi.org/10.1038/nature08263 (2009).

    Google Scholar 

  9. Herman, F. et al. Erosion by an Alpine glacier. Science 350, 193–195, https://doi.org/10.1126/science.aab2386 (2015).

    Google Scholar 

  10. Herman, F. et al. Worldwide acceleration of mountain erosion under a cooling climate. Nature 504, 423–426, https://doi.org/10.1038/nature12877 (2013).

    Google Scholar 

  11. Hall, A. M. & Kleman, J. Glacial and periglacial buzzsaws: fitting mechanisms to metaphors. Quaternary Research 81, 189–192, https://doi.org/10.1016/j.yqres.2013.10.007 (2014).

    Google Scholar 

  12. Hoorn, C. et al. The Amazon at sea: Onset and stages of the Amazon River from a marine record, with special reference to Neogene plant turnover in the drainage basin. Global and Planetary Change 153, 51–65, https://doi.org/10.1016/j.gloplacha.2017.02.005 (2017).

    Google Scholar 

  13. Flantua, S. G. A., O’Dea, A., Onstein, R. E., Giraldo, C. & Hooghiemstra, H. The flickering connectivity system of the north Andean páramos. Journal of Biogeography 46, 1808–1825, https://doi.org/10.1111/jbi.13607 (2019).

    Google Scholar 

  14. Shaw, T. E., Buri, P., McCarthy, M., Miles, E. S. & Pellicciotti, F. Local Controls on Near‐Surface Glacier Cooling Under Warm Atmospheric Conditions. Journal of Geophysical Research: Atmospheres 129, e2023JD040214, https://doi.org/10.1029/2023JD040214 (2024).

    Google Scholar 

  15. Salerno, F. et al. Local cooling and drying induced by Himalayan glaciers under global warming. Nature Geoscience 16, 1120–1127, https://doi.org/10.1038/s41561-023-01331-y (2023).

    Google Scholar 

  16. Gillespie, A. & Molnar, P. Asynchronous maximum advances of mountain and continental glaciers. Reviews of Geophysics 33, 311–364, https://doi.org/10.1029/95RG00995 (1995).

    Google Scholar 

  17. Petherick, L. M. et al. An extended last glacial maximum in the Southern Hemisphere: A contribution to the SHeMax project. Earth-Science Reviews 231, 104090, https://doi.org/10.1016/j.earscirev.2022.104090 (2022).

    Google Scholar 

  18. Clark, P. U. et al. The Last Glacial Maximum. Science 325, 710–714, https://doi.org/10.1126/science.1172873 (2009).

    Google Scholar 

  19. Tierney, J. E. et al. Glacial cooling and climate sensitivity revisited. Nature 584, 569–573, https://doi.org/10.1038/s41586-020-2617-x (2020).

    Google Scholar 

  20. Annan, J. D., Hargreaves, J. C. & Mauritsen, T. A new global surface temperature reconstruction for the Last Glacial Maximum. Climate of the Past 18, 1883–1896, https://doi.org/10.5194/cp-18-1883-2022 (2022).

    Google Scholar 

  21. Seltzer, A. M., Blard, P.-H., Sherwood, S. C. & Kageyama, M. Terrestrial amplification of past, present, and future climate change. Sci. Adv. 9, eadf8119, https://doi.org/10.1126/sciadv.adf8119 (2023).

    Google Scholar 

  22. Bentley, M. J. et al. A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum. Quaternary Science Reviews 100, 1–9, https://doi.org/10.1016/j.quascirev.2014.06.025 (2014).

    Google Scholar 

  23. Leger, T. P. M. et al. A Greenland-wide empirical reconstruction of paleo ice sheet retreat informed by ice extent markers: PaleoGrIS version 1.0. Climate of the Past 20, 701–755, https://doi.org/10.5194/cp-20-701-2024 (2024).

    Google Scholar 

  24. Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J. & Svendsen, J. I. The last Eurasian ice sheets – a chronological database and time‐slice reconstruction, DATED‐1. Boreas 45, 1–45, https://doi.org/10.1111/bor.12142 (2016).

    Google Scholar 

  25. Mark, B. G. et al. Tropical snowline changes at the last glacial maximum: a global assessment. Quaternary International 138, 168–201, https://doi.org/10.1016/j.quaint.2005.02.012 (2005).

    Google Scholar 

  26. Prentice, M. L., Hope, G. S., Maryunani, K. & Peterson, J. A. An evaluation of snowline data across New Guinea during the last major glaciation, and area-based glacier snowlines in the Mt. Jaya region of Papua, Indonesia, during the Last Glacial Maximum. Quaternary International 138–139, 93–117, https://doi.org/10.1016/j.quaint.2005.02.008 (2005).

    Google Scholar 

  27. Smith, J. A., Mark, B. G. & Rodbell, D. T. The timing and magnitude of mountain glaciation in the tropical Andes. Journal of Quaternary Science 23, 609–634, https://doi.org/10.1002/jqs.1224 (2008).

    Google Scholar 

  28. Mark, B. G. & Osmaston, H. A. Quaternary glaciation in Africa: key chronologies and climatic implications. Journal of Quaternary Science 23, 589–608, https://doi.org/10.1002/jqs.1222 (2008).

    Google Scholar 

  29. Hughes, P. D. & Woodward, J. C. Quaternary glaciation in the Mediterranean mountains: a new synthesis. Geological Society, London, Special Publications 433, 1–23, https://doi.org/10.1144/SP433.14 (2017).

    Google Scholar 

  30. Angel, I., Guzman, O. & Carcaillet, J. Pleistocene Glaciations in the Northern Tropical Andes, South America (Venezuela, Colombia and Ecuador). Cuadernos de Investigación Geográfica 43, 571–590, https://doi.org/10.18172/cig.3202 (2017).

    Google Scholar 

  31. Palacios, D. et al. The deglaciation of the Americas during the Last Glacial Termination. Earth-Science Reviews 203, 103113, https://doi.org/10.1016/j.earscirev.2020.103113 (2020).

    Google Scholar 

  32. Thackray, G. D., Owen, L. A. & Yi, C. Timing and nature of late Quaternary mountain glaciation. Journal of Quaternary Science 23, 503–508, https://doi.org/10.1002/jqs.1225 (2008).

    Google Scholar 

  33. Haywood, A. M. et al. What can Palaeoclimate Modelling do for you? Earth Systems and Environment 3, 1–18, https://doi.org/10.1007/s41748-019-00093-1 (2019).

    Google Scholar 

  34. Schönswetter, P., Stehlik, I., Holderegger, R. & Tribsch, A. Molecular evidence for glacial refugia of mountain plants in the European Alps. Molecular Ecology 14, 3547–3555, https://doi.org/10.1111/j.1365-294X.2005.02683.x (2005).

    Google Scholar 

  35. Flantua, S. G. A. et al. Snapshot isolation and isolation history challenge the analogy between mountains and islands used to understand endemism. Global Ecology and Biogeography 29, 1651–1673, https://doi.org/10.1111/geb.13155 (2020).

    Google Scholar 

  36. Ehlers, J. & Gibbard, P. L. Quaternary Glaciations: Extent and Chronology. (Elsevier, Amsterdam, 2004).

  37. Quaternary Glaciations - Extent and Chronology: A Closer Look. (Elsevier, Amsterdam; Boston, 2011).

  38. Burkhalter, R. & Bini, A. cartographe. Die Schweiz während des letzteiszeitlichen Maximums (LGM) = La Suisse durant le dernier maximum glaciaire = La Svizzera durante l’ultimo massimo glaciale = Switzerland during the last glacial maximum. (Bundesamt für Landestopografie Swisstopo, Wabern, 2009).

  39. Kaufman, D. S., Young, N. E., Briner, J. P. & Manley, W. F. Alaska Palaeo-Glacier Atlas (Version 2). in Developments in Quaternary Sciences 15 427–445. https://doi.org/10.1016/B978-0-444-53447-7.00033-7 (Elsevier, 2011).

  40. Barr, I. D. & Clark, C. D. Late Quaternary glaciations in Far NE Russia; combining moraines, topography and chronology to assess regional and global glaciation synchrony. Quaternary Science Reviews 53, 72–87, https://doi.org/10.1016/j.quascirev.2012.08.004 (2012).

    Google Scholar 

  41. Laabs, B. J. C., Licciardi, J. M., Leonard, E. M., Munroe, J. S. & Marchetti, D. W. Updated cosmogenic chronologies of Pleistocene mountain glaciation in the western United States and associated paleoclimate inferences. Quaternary Science Reviews 242, 106427, https://doi.org/10.1016/j.quascirev.2020.106427 (2020).

    Google Scholar 

  42. Iberia, Land of Glaciers: How the Mountains Were Shaped by Glaciers. (Elsevier, Amsterdam, Netherlands; Cambridge, MA, 2022).

  43. Kłapyta, P., Zasadni, J. & Mîndrescu, M. Late Pleistocene glaciation in the Eastern Carpathians – a regional overview. CATENA 224, 106994, https://doi.org/10.1016/j.catena.2023.106994 (2023).

    Google Scholar 

  44. North Dakota State University, Laabs, B., Anderson, L., Licciardi, J. & Tulenko, J. Developing A Geospatial Database of Late Pleistocene Mountain Glaciers in The Western United States. in 387976. https://doi.org/10.1130/abs/2023RM-387976 (2023).

  45. Davies, B. J. et al. The evolution of the Patagonian Ice Sheet from 35 ka to the present day (PATICE). Earth-Science Reviews 204, 103152, https://doi.org/10.1016/j.earscirev.2020.103152 (2020).

    Google Scholar 

  46. Dalton, A. S. et al. Deglaciation of the north American ice sheet complex in calendar years based on a comprehensive database of chronological data: NADI-1. Quaternary Science Reviews 321, 108345, https://doi.org/10.1016/j.quascirev.2023.108345 (2023).

    Google Scholar 

  47. Stroeven, A. P. et al. Deglaciation of Fennoscandia. Quaternary Science Reviews 147, 91–121, https://doi.org/10.1016/j.quascirev.2015.09.016 (2016).

    Google Scholar 

  48. Clark, C. D. et al. Growth and retreat of the last British–Irish Ice Sheet, 31 000 to 15 000 years ago: the BRITICE‐CHRONO reconstruction. Boreas 51, 699–758, https://doi.org/10.1111/bor.12594 (2022).

    Google Scholar 

  49. Hendrickx, H., Jacob, M., Frankl, A. & Nyssen, J. Glacial and periglacial geomorphology and its paleoclimatological significance in three North Ethiopian Mountains, including a detailed geomorphological map. Geomorphology 246, 156–167, https://doi.org/10.1016/j.geomorph.2015.05.005 (2015).

    Google Scholar 

  50. Carrasco, R. M., Pedraza, J., Domínguez-Villar, D., Villa, J. & Willenbring, J. K. The plateau glacier in the Sierra de Béjar (Iberian Central System) during its maximum extent. Reconstruction and chronology. Geomorphology 196, 83–93, https://doi.org/10.1016/j.geomorph.2012.03.019 (2013).

    Google Scholar 

  51. Lukas, S. Morphostratigraphic principles in glacier reconstruction -a perspective from the British Younger Dryas. Progress in Physical Geography: Earth and Environment 30, 719–736, https://doi.org/10.1177/0309133306071955 (2006).

    Google Scholar 

  52. Pearce, D., Ely, J., Barr, I. & Boston, C. Chapter 3.4.9 Glacier reconstruction in Geomorphological Techniques. in Geomorphological Techniques 1–16 (British Society for Geomorphology, 2017).

  53. James, W. H. M. & Carrivick, J. L. Automated modelling of spatially-distributed glacier ice thickness and volume. Computers & Geosciences 92, 90–103, https://doi.org/10.1016/j.cageo.2016.04.007 (2016).

    Google Scholar 

  54. James, W. H. M., Carrivick, J. L., Quincey, D. J. & Glasser, N. F. A geomorphology based reconstruction of ice volume distribution at the Last Glacial Maximum across the Southern Alps of New Zealand. Quaternary Science Reviews 219, 20–35, https://doi.org/10.1016/j.quascirev.2019.06.035 (2019).

    Google Scholar 

  55. Li, Y. PalaeoIce: An automated method to reconstruct palaeoglaciers using geomorphic evidence and digital elevation models. Geomorphology 421, 108523, https://doi.org/10.1016/j.geomorph.2022.108523 (2023).

    Google Scholar 

  56. Pellitero, R. et al. GlaRe, a GIS tool to reconstruct the 3D surface of palaeoglaciers. Computers & Geosciences 94, 77–85, https://doi.org/10.1016/j.cageo.2016.06.008 (2016).

    Google Scholar 

  57. Plummer, M. A. & Phillips, F. M. A 2-D numerical model of snow/ice energy balance and ice flow for paleoclimatic interpretation of glacial geomorphic features. Quaternary Science Reviews 22, 1389–1406, https://doi.org/10.1016/S0277-3791(03)00081-7 (2003).

    Google Scholar 

  58. Leger, T. P. M. et al. A data-consistent model of the last glaciation in the Alps achieved with physics-driven AI. Nature Communications 16, 848, https://doi.org/10.1038/s41467-025-56168-3 (2025).

    Google Scholar 

  59. Rocamora, I., Ienco, D. & Ferry, M. Multi-source deep-learning approach for automatic geomorphological mapping: the case of glacial moraines. Geo-spatial Information Science 27, 1747–1766, https://doi.org/10.1080/10095020.2023.2292587 (2024).

    Google Scholar 

  60. Sharp, R. P., Allen, C. R. & Meier, M. F. Pleistocene glaciers on southern California mountains. American Journal of Science 257, 81–94, https://doi.org/10.2475/ajs.257.2.81 (1959).

    Google Scholar 

  61. Sharp, R. P. Pleistocene glaciation in the Trinity Alps of northern California. American Journal of Science 258, 305–340, https://doi.org/10.2475/ajs.258.5.305 (1960).

    Google Scholar 

  62. Emmer, A. et al. Glacier retreat and associated processes since the Last Glacial Maximum in the Lejiamayu valley, Peruvian Andes. Journal of South American Earth Sciences 109, 103254, https://doi.org/10.1016/j.jsames.2021.103254 (2021).

    Google Scholar 

  63. Kłapyta, P., Mîndrescu, M. & Zasadni, J. Geomorphological record and equilibrium line altitude of glaciers during the last glacial maximum in the Rodna Mountains (eastern Carpathians). Quaternary Research 100, 1–20, https://doi.org/10.1017/qua.2020.90 (2021).

    Google Scholar 

  64. Kamleitner, S. et al. The Ticino-Toce glacier system (Swiss-Italian Alps) in the framework of the Alpine Last Glacial Maximum. Quaternary Science Reviews 279, 107400, https://doi.org/10.1016/j.quascirev.2022.107400 (2022).

    Google Scholar 

  65. Balco, G. Technical note: A prototype transparent-middle-layer data management and analysis infrastructure for cosmogenic-nuclide exposure dating. Geochronology 2, 169–175, https://doi.org/10.5194/gchron-2-169-2020 (2020).

    Google Scholar 

  66. Heyman, J. A global compilation of glacial 10Be and 26Al data. ExPage (Github Pages).

  67. Yokoyama, Y., Lambeck, K., De Deckker, P., Johnston, P. & Fifield, L. K. Timing of the Last Glacial Maximum from observed sea-level minima. Nature 406, 713–716, https://doi.org/10.1038/35021035 (2000).

    Google Scholar 

  68. Mix, A. Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quaternary Science Reviews 20, 627–657, https://doi.org/10.1016/S0277-3791(00)00145-1 (2001).

    Google Scholar 

  69. Clark, P. U. & Mix, A. C. Ice sheets and sea level of the Last Glacial Maximum. Quaternary Science Reviews 21, 1–7, https://doi.org/10.1016/S0277-3791(01)00118-4 (2002).

    Google Scholar 

  70. Hughes, P. D., Gibbard, P. L. & Ehlers, J. Timing of glaciation during the last glacial cycle: evaluating the concept of a global ‘Last Glacial Maximum’ (LGM). Earth-Science Reviews 125, 171–198, https://doi.org/10.1016/j.earscirev.2013.07.003 (2013).

    Google Scholar 

  71. Hughes, P. D. & Gibbard, P. L. Evaluating the Concept of a Global “Last Glacial Maximum” (LGM): A Terrestrial Perspective. in STRATI 2013 (eds. Rocha, R., Pais, J., Kullberg, J. C. & Finney, S.) 943–945. https://doi.org/10.1007/978-3-319-04364-7_177 (Springer International Publishing, Cham, 2014).

  72. Lisiecki, L. E. & Raymo, M. E. A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ 18 O records. Paleoceanography 20, 2004PA001071, https://doi.org/10.1029/2004PA001071 (2005).

    Google Scholar 

  73. CLIMAP Project Members. The Surface of the Ice-Age Earth: Quantitative geologic evidence is used to reconstruct boundary conditions for the climate 18,000 years ago. Science 191, 1131–1137, https://doi.org/10.1126/science.191.4232.1131 (1976).

    Google Scholar 

  74. Cline, R. M. L. et al. The Last Interglacial Ocean. Quaternary Research 21, 123–224, https://doi.org/10.1016/0033-5894(84)90098-X (1984).

    Google Scholar 

  75. Peltier, W. R. & Fairbanks, R. G. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews 25, 3322–3337, https://doi.org/10.1016/j.quascirev.2006.04.010 (2006).

    Google Scholar 

  76. Hughes, P. D. & Gibbard, P. L. A stratigraphical basis for the Last Glacial Maximum (LGM). Quaternary International 383, 174–185, https://doi.org/10.1016/j.quaint.2014.06.006 (2015).

    Google Scholar 

  77. Shakun, J. D. & Carlson, A. E. A global perspective on Last Glacial Maximum to Holocene climate change. Quaternary Science Reviews 29, 1801–1816, https://doi.org/10.1016/j.quascirev.2010.03.016 (2010).

    Google Scholar 

  78. Smith, J. A., Seltzer, G. O., Farber, D. L., Rodbell, D. T. & Finkel, R. C. Early Local Last Glacial Maximum in the Tropical Andes. Science 308, 678–681, https://doi.org/10.1126/science.1107075 (2005).

    Google Scholar 

  79. Blard, P.-H. et al. Late local glacial maximum in the Central Altiplano triggered by cold and locally-wet conditions during the paleolake Tauca episode (17–15ka, Heinrich 1). Quaternary Science Reviews 28, 3414–3427, https://doi.org/10.1016/j.quascirev.2009.09.025 (2009).

    Google Scholar 

  80. Incera Sañudo, L., Rodríguez-Rodríguez, L. & Jiménez-Sánchez, M. Reconstrucción topográfica del paleoglaciar del valle del río Miera (Cantabria) durante el último máximo glaciar local. Geogaceta 74, 51–54, https://doi.org/10.55407/geogaceta98266 (2023).

    Google Scholar 

  81. Clapperton, C. M. Quaternary glaciations in the southern hemisphere: An overview. Quaternary Science Reviews 9, 299–304, https://doi.org/10.1016/0277-3791(90)90024-5 (1990).

    Google Scholar 

  82. Esri. ArcGIS Pro. (2024).

  83. Bini, A. Die Schweiz während des letzteiszeitlichen Maximums (LGM): = La Suisse durant le dernier maximum glaciaire (2009).

  84. Lee, E. et al. Palaeoglaciation in the low latitude, low elevation tropical Andes, northern Peru. Frontiers in Earth Science 10, 838826 (2022).

    Google Scholar 

  85. Barrows, T. T., Stone, J. O., Fifield, L. K. & Cresswell, R. G. The timing of the Last Glacial Maximum in Australia. Quaternary Science Reviews 21, 159–173, https://doi.org/10.1016/S0277-3791(01)00109-3 (2002).

    Google Scholar 

  86. agency), W. F. P. (United N. World Administrative Boundaries - Countries and Territories. (2019).

  87. Batchelor, C. L. et al. The configuration of Northern Hemisphere ice sheets through the Quaternary. Nature Communications 10, 3713, https://doi.org/10.1038/s41467-019-11601-2 (2019).

    Google Scholar 

  88. Batchelor, C., Manica, A., Murton, D. & Krapp, M. The configuration of Northern Hemisphere ice sheets through the Quaternary. https://doi.org/10.17605/OSF.IO/7JEN3 (2019).

  89. NOAA National Centers for Environmental Information. ETOPO 2022 30 Arc-Second Global Relief Model. https://doi.org/10.25921/FD45-GT74 (2022).

  90. Snethlage, M. A. et al. GMBA Mountain Inventory v2: A hierarchical inventory of the world’s mountains for global comparative mountain science. 322mb GMBA-EarthEnv https://doi.org/10.48601/EARTHENV-T9K2-1407 (2021).

  91. Snethlage, M. A. et al. A hierarchical inventory of the world’s mountains for global comparative mountain science. Scientific Data 9, 149, https://doi.org/10.1038/s41597-022-01256-y (2022).

    Google Scholar 

  92. Benn, D. I. & Hulton, N. R. J. An ExcelTM spreadsheet program for reconstructing the surface profile of former mountain glaciers and ice caps. Computers & Geosciences 36, 605–610, https://doi.org/10.1016/j.cageo.2009.09.016 (2010).

    Google Scholar 

  93. Ferk, M., Gabrovec, M., Komac, B., Zorn, M. & Stepišnik, U. Pleistocene glaciation in Mediterranean Slovenia. Geological Society, London, Special Publications 433, 179–191, https://doi.org/10.1144/SP433.2 (2017).

    Google Scholar 

  94. Kuhle, M. The Last Glacial Maximum (LGM) glacier cover of the Aconcagua group and adjacent massifs in the Mendoza Andes (South America). in Developments in Quaternary Sciences 2 75–82. https://doi.org/10.1016/S1571-0866(04)80113-1 (Elsevier, 2004).

  95. Umer, M., Kebede, S. & Osmaston, H. Quaternary glacial activity on the Ethiopian mountains. in Developments in Quaternary Sciences 2 171–174. https://doi.org/10.1016/S1571-0866(04)80122-2 (Elsevier, 2004).

  96. Lachniet, M. S. & Vazquez-Selem, L. Last Glacial Maximum equilibrium line altitudes in the circum-Caribbean (Mexico, Guatemala, Costa Rica, Colombia, and Venezuela). Quaternary International 138–139, 129–144, https://doi.org/10.1016/j.quaint.2005.02.010 (2005).

    Google Scholar 

  97. Prentice, M. L., Hope, G. S., Peterson, J. A. & Barrows, T. T. The Glaciation of the South-East Asian Equatorial Region. in Developments in Quaternary Sciences 15 1023–1036. https://doi.org/10.1016/B978-0-444-53447-7.00073-8 (Elsevier, 2011).

  98. Serrano, E., González-Trueba, J. J. & González-García, M. Mountain glaciation and paleoclimate reconstruction in the Picos de Europa (Iberian Peninsula, SW Europe). Quaternary Research 78, 303–314, https://doi.org/10.1016/j.yqres.2012.05.016 (2012).

    Google Scholar 

  99. Hannah, G., Hughes, P. D. & Gibbard, P. L. Pleistocene plateau ice fields in the High Atlas, Morocco. Geological Society, London, Special Publications 433, 25–53, https://doi.org/10.1144/SP433.12 (2017).

    Google Scholar 

  100. Pope, R. J. J. et al. Long-term glacial and fluvial system coupling in southern Greece and evidence for glaciation during Marine Isotope Stage 16. Quaternary Science Reviews 317, 108239, https://doi.org/10.1016/j.quascirev.2023.108239 (2023).

    Google Scholar 

  101. Heyman, J. et al. Palaeoglaciology of Bayan Har Shan, NE Tibetan Plateau: exposure ages reveal a missing LGM expansion. Quaternary Science Reviews 30, 1988–2001, https://doi.org/10.1016/j.quascirev.2011.05.002 (2011).

    Google Scholar 

  102. Lima, C. L. et al. Glacimontis. Zenodo https://doi.org/10.5281/zenodo.15600659 (2025).

  103. Dahms, D. E. Glacial limits in the middle and southern Rocky mountains, U.S.A., south of the Yellowstone ice cap. in Developments in Quaternary Sciences 2 275–288. https://doi.org/10.1016/S1571-0866(04)80203-3 (Elsevier, 2004).

Download references

Acknowledgements

We want to thank the paleoglacier community for providing their data in open-access format: Robin Blomdin, Elena Serra, Piotr Kłapyta, William James, Bethan Davies; Yan Qing, Jerzy Zasadni, Gonçalo Vieira and Christine Batchelor. As for the researchers who willingly contributed and shared their data to our requests, making this research possible: Ethan Lee, Alice Doughty, Alexander Gross, Hanne Hendrickx, Sarah Kamleitner, Nestor Campos, Adriano Ribolini, Jorge Luis Ceballos, Jürgen Mey, Iestyn Barr, Zsófia Ruszkiczay-Rüdige, Lukas Retti, Shakil Romshoo, Magali Delmas, Naki Akçar, Edgar Figueira, Alejandro Gómez-Pazo, Qian Zhang, Adam Emmer, Felix Hofmann, Rosa Carrasco, Manja Žebre, Aleksandar Petrović, Javier Pedraza, Laro Incera Sañudo, Matias Gallardo, Ádám Ignéczi, Javier Santos-González, José María Redondo-Vega, Dmitry Ganyushkin. We also thank the Western US Paleoglacier Working Group and the Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM) for providing their compilation of paleoglaciers in the Western U.S. and in Colombia, respectively. We specifically acknowledge the pioneering contributions of Jürgen Ehlers, Phillip L. Gibbard, Phillip D. Hughes, and all the book chapter authors in the Quaternary glaciations: extent and chronology and Quaternary glaciations – extent and chronology: a closer look, who first undertook this effort and provided an impressive geodatabase nearly 20 years ago. Finally, we would like to thank Eline S. Rentier (UiB) for her comments on earlier versions of the manuscript. A.C.L.N. and S.G.A.F. acknowledge financial support from Trond Mohn Research Foundation (TMF) and the University of Bergen for the startup grant ‘TMS2022STG03’ to S.G.A. Flantua. Funding for open access funding publishing was supported by the University of Bergen. M.M. acknowledges support by the Johannes Amos Comenius Programme (P JAC), project No. CZ.02.01.01/00/22_008/0004605, Natural and anthropogenic georisks.

Funding

Open access funding provided by University of Bergen.

Author information

Author notes
  1. Helen E. Dulfer

    Present address: Department of Geography, School of Environment, Education and Development, The University of Manchester, Manchester, UK

  2. Anna L. C. Hughes

    Present address: Discipline of Geography, School of Natural Sciences, Trinity College Dublin, University of Dublin. College Green, Dublin, 2, Ireland

  3. Benjamin J. C. Laabs

    Present address: U.S. Bureau of Reclamation, Denver, Colorado, USA

Authors and Affiliations

  1. Department of Biological Sciences, University of Bergen, Bergen, Norway

    Augusto C. Lima

  2. School of Geography and Planning, University of Sheffield, Sheffield, S10 2TN, UK

    Helen E. Dulfer

  3. Department of Physical Geography and Geoecology, Charles University, Prague, Czech Republic

    Martin Margold

  4. Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK

    Iestyn Barr

  5. Department of Biological Sciences, North Dakota State University, Fargo, North Dakota, USA

    Benjamin J. C. Laabs

  6. Department of Biological Sciences, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway

    Suzette G. A. Flantua

Authors
  1. Augusto C. Lima
    View author publications

    Search author on:PubMed Google Scholar

  2. Helen E. Dulfer
    View author publications

    Search author on:PubMed Google Scholar

  3. Anna L. C. Hughes
    View author publications

    Search author on:PubMed Google Scholar

  4. Martin Margold
    View author publications

    Search author on:PubMed Google Scholar

  5. Iestyn Barr
    View author publications

    Search author on:PubMed Google Scholar

  6. Benjamin J. C. Laabs
    View author publications

    Search author on:PubMed Google Scholar

  7. Suzette G. A. Flantua
    View author publications

    Search author on:PubMed Google Scholar

Contributions

A.C.L. data acquisition, processing, validation, writing-original draft, proof reading. A.L.C.H. project conception, data acquisition, writing, proof reading. B.J.C.L. data acquisition, writing, proof reading. H.D. project conception, data acquisition, writing, proof reading. I.B. data acquisition, processing, writing, proof reading. M.M. project conception, data acquisition, writing, proof reading. S.G.A.F. project conception, data acquisition, writing-original draft, proof reading, supervision.

Corresponding authors

Correspondence to Augusto C. Lima or Suzette G. A. Flantua.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Table 1

Data Supplementary Information 1 (Data S1)

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, A.C., Dulfer, H.E., Hughes, A.L.C. et al. Mountain glacier extents at the Last Glacial Maximum. Sci Data (2026). https://doi.org/10.1038/s41597-026-06841-z

Download citation

  • Received: 16 June 2025

  • Accepted: 05 February 2026

  • Published: 17 February 2026

  • DOI: https://doi.org/10.1038/s41597-026-06841-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims and scope
  • Editors & Editorial Board
  • Journal Metrics
  • Policies
  • Open Access Fees and Funding
  • Calls for Papers
  • Contact

Publish with us

  • Submission Guidelines
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Data (Sci Data)

ISSN 2052-4463 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing