Table 1 Relation between the effective potential \(U_{\mathrm {eff}}\) and effective energy \(E_{\mathrm {eff}}\), indicating the four situations corresponding to different kinds of wavefunction solutions; notably, quasi-bound states exist in situation (2).

From: Quasi-bound states in an NPN-type nanometer-scale graphene quantum dot under a magnetic field

 

Situation

Solution of the wavefunction

(1)

\(E^2>\big(\frac{m}{R}+\frac{eBR}{2}\big)^2\)

Plane wave solutions

(2)

\(2eBm<E^2\le \big(\frac{m}{R}+\frac{eBR}{2}\big)^2\)

Quasi-bound state solutions

(3)

\(2EV_{0}-V_{0}^2+\big(\frac{m}{R}+\frac{eBR}{2}\big)^2<E^2\le 2eBm\)

Bound state solutions

(4)

\(E^2<2EV_{0}-V_{0}^2+\big(\frac{m}{R}+\frac{eBR}{2}\big)^2\)

No solution