Table 14 The evaluation measures of different forecasting models in the death cases.

From: A new grey quadratic polynomial model and its application in the COVID-19 in China

 

GM(1,1)

DGM(1,1)

NGM(1,1,k,c)

GVM(1,1)

PR(2)

GMQP(1,1)

MAEsim

31.6097

33.7059

18.1322

120.6217

1.9217

1.5865

MAEfit

239.0131

250.7807

16.1704

297.7345

8.4071

3.5972

MAEall

70.4979

74.4075

17.7643

153.8304

3.1377

1.9635

MSEsim

1518.4319

1737.0336

427.6899

21,254.5680

5.4033

3.2758

MSEfit

62,853.2325

68,996.8802

373.3784

88,872.0233

75.9216

23.8122

MSEall

13,018.7071

14,348.2548

417.5065

33,932.8408

18.6255

7.1264

MAPEsim

38.7836

39.8725

17.9543

76.4685

2.0505

1.6496

MAPEfit

41.5099

43.5770

3.1013

53.1982

1.4702

0.5921

MAPEall

39.2948

40.5671

15.1693

72.1053

1.9417

1.4513

RMSPEsim

58.6176

59.3060

25.9388

76.7641

2.9375

2.0616

RMSPEfit

42.4628

44.5301

3.7858

53.2813

1.5009

0.7745

RMSPEEall

55.9451

56.8289

23.4383

72.9392

2.7265

1.8883

IAsim

0.9819

0.9794

0.9947

0.7925

0.9999

1.0000

IAfit

0.9271

0.9220

0.9992

0.4252

0.9998

0.9999

IAall

0.9433

0.9388

0.9972

0.6976

0.9999

1.0000

Rsim

0.9948

0.9947

0.9996

0.9729

0.9998

0.9999

Rfit

0.9982

0.9982

0.9992

0.9999

0.9998

0.9997

Rall

0.9870

0.9868

0.9986

0.9756

0.9999

0.9999