Table 17 The evaluation measures of different forecasting models in the recovered cases.

From: A new grey quadratic polynomial model and its application in the COVID-19 in China

 

GM(1,1)

DGM(1,1)

NGM(1,1,k,c)

GVM(1,1)

PR(2)

GMQP(1,1)

MAEsim

28.3608

18.7810

44.8298

140.0672

39.7383

7.6964

MAEfit

66.8066

79.9669

147.8451

816.5043

529.8849

17.8839

MAEall

35.5694

30.2534

64.1452

266.8992

131.6408

9.6065

MSEsim

1822.7206

770.2744

4365.6633

39,193.1139

2009.7999

150.7354

MSEfit

4532.9501

12,798.8826

22,883.2485

696,996.3883

340,450.6755

474.7209

MSEall

2330.8886

3025.6384

7837.7105

162,531.2278

65,467.4640

211.4826

MAPEsim

10.4450

8.8085

15.2606

45.7771

29.6726

4.6767

MAPEfit

3.4499

3.2782

7.7081

39.2977

24.0671

0.9435

MAPEall

9.1335

7.7715

13.8446

44.5622

28.6215

3.9767

RMSPEsim

13.5461

12.5571

18.2762

46.4493

40.4100

7.1431

RMSPEfit

3.6461

4.3342

8.2016

39.2984

24.9365

1.1304

RMSPEEall

12.3119

11.4733

16.8524

45.1948

37.9918

6.4573

IAsim

0.9977

0.9990

0.9946

0.9530

0.9975

0.9998

IAfit

0.9995

0.9987

0.9973

0.8587

0.9444

0.9999

IAall

0.9990

0.9988

0.9965

0.8986

0.9639

0.9999

Rsim

0.9993

0.9993

0.9993

0.9992

0.9905

0.9996

Rfit

0.9991

0.9991

0.9991

0.9999

0.9998

0.9996

Rall

0.9987

0.9985

0.9988

0.9998

0.9832

0.9999