Table 2 Results comparison.
Algorithm | Accuracy (%) | F1-Score | Precision | Recall | Training time (sec.) | Memory(MB) | Process CPU Threads | Correctly Classified Instances | |
|---|---|---|---|---|---|---|---|---|---|
0 out of 48 | 1 out of 52 | ||||||||
MLP | 84 | 0.8384 | 0.8456 | 0.8373 | 0.359787 | 0.523651 | 25 threads/31.902 sec. | 37 | 47 |
KNN | 67 | 0.6697 | 0.6737 | 0.6723 | 0.003982 | 0.539646 | 21 threads/7.998 sec. | 35 | 32 |
SVM Linear Kernal | 85 | 0.8465 | 0.8698 | 0.8454 | 0.024401 | 0.545628 | 21 threads/2.885 sec. | 36 | 49 |
SVM Non-Linear Kernal | 86 | 0.8572 | 0.8769 | 0.8558 | 0.043466 | 0.549362 | 23 threads/1.775 sec. | 36 | 50 |
Random Forest | 85 | 0.8465 | 0.8698 | 0.8454 | 0.086674 | 0.551956 | 21 threads/2.292 sec. | 35 | 50 |
ADA Boost | 87 | 0.8661 | 0.9 | 0.8646 | 0.020187 | 0.553989 | 25 threads/74.03 sec. | 35 | 52 |