Table 1 FBQP model.(2) in Case I, where \(A,B,x_{-2},x_{-1},x_{0}\) are fuzzy parameters in (4.2)
From: Dynamic analysis of a fuzzy Bobwhite quail population model under g-division law
| Â | \(A_{r}\) | \(B_{r}\) | \(x_{-2,r}\) | \(x_{-1,r}\) | \(x_{0,r}\) | \(x_r\) | \(x^*_{r}\) |
|---|---|---|---|---|---|---|---|
\(A_{l}\) | \(B_{l}\) | \(x_{-2,l}\) | \(x_{-1,l}\) | \(x_{0,l}\) | \(x_l\) | \(x^*_{l}\) | |
\(\alpha \)=0 | 2.0000 | 0.3500 | 1.2500 | 1.3500 | 1.4500 | (2.0000,6.4500) | 3.5147 |
| Â | 1.5000 | 0.1500 | 0.7500 | 0.6500 | 0.5500 | (1.5000,4.4486) | 2.2806 |
\(\alpha \)=0.25 | 1.9665 | 0.3366 | 1.2165 | 1.3031 | 1.3897 | (1.9665,6.2476) | 3.4068 |
| Â | 1.5335 | 0.1634 | 0.7835 | 0.6969 | 0.6103 | (1.5335,4.5114) | 2.3431 |
\(\alpha \)=0.5 | 1.9268 | 0.3207 | 1.1768 | 1.2475 | 1.3182 | (1.9268,6.0185) | 3.2846 |
| Â | 1.5732 | 0.1793 | 0.8232 | 0.7525 | 0.6818 | (1.5732,4.5989) | 2.4203 |
\(\alpha \)=0.75 | 1.8750 | 0.3000 | 1.1250 | 1.1750 | 1.2250 | (1.8750,5.7370) | 3.1344 |
| Â | 1.6250 | 0.2000 | 0.8750 | .82500 | 0.7750 | (1.6520,4.7321) | 2.5261 |
\(\alpha \)=1 | 1.7500 | 0.2500 | 1.0000 | 1.0000 | 1.0000 | (1.7500,5.1325) | 2.8081 |
| Â | 1.7500 | 0.2500 | 1.0000 | 1.0000 | 1.0000 | (1.7500,5.1325) | 2.8081 |