Table 2 FBQP model.(2) with (4.2)
From: Dynamic analysis of a fuzzy Bobwhite quail population model under g-division law
| Â | \(A_{r}\) | \(B_{r}\) | \(x_{-2,r}\) | \(x_{-1,r}\) | \(x_{0,r}\) | \(x_r\) | \(x^*_{r}\) |
|---|---|---|---|---|---|---|---|
\(A_{l}\) | \(B_{l}\) | \(x_{-2,l}\) | \(x_{-1,l}\) | \(x_{0,l}\) | \(x_l\) | \(x^*_{l}\) | |
\(\alpha \)=0 | 2.0000 | 0.3500 | 1.2500 | 1.3500 | 1.4500 | (2.0000,6.2819) | 3.8192 |
| Â | 1.5000 | 0.3366 | 0.7500 | 0.6500 | 0.5500 | (1.5000,3.3997) | 2.0728 |
\(\alpha \)=0.25 | 1.9665 | 0.2433 | 1.2165 | 1.3031 | 1.3897 | (1.9665,6.0414) | 4.6126 |
| Â | 1.5335 | 0.1567 | 0.7835 | 0.6969 | 0.6103 | (1.5335,3.5571) | 2.1594 |
\(\alpha \)=0.5 | 1.9268 | 0.3207 | 1.1768 | 1.2475 | 1.3182 | (1.9268,5.7677) | 3.4860 |
| Â | 1.5732 | 0.1793 | 0.8232 | 0.7525 | 0.6818 | (1.5732,3.7487) | 2.2664 |
\(\alpha \)=0.75 | 1.8750 | 0.3000 | 1.1250 | 1.1750 | 1.2250 | (1.8750,5.4283) | 3.2705 |
| Â | 1.6250 | 0.2000 | 0.8750 | 0.8250 | 0.7750 | (1.6250,4.0073) | 2.4135 |
\(\alpha \)=1 | 1.7500 | 0.2500 | 1.0000 | 1.0000 | 1.0000 | (1.7500,4.6779) | 2.8081 |
| Â | 2.0000 | 1.7500 | 1.0000 | 1.0000 | 1.0000 | (1.7500,4.6779) | 2.8081 |