Table 5 ESM individual model performance. ESM: Ensemble model, TSS: True Skill Statistics, ROC: Reciever Operating Characteristics, KAPPA: Cohen’s Kappa, ANN: Artificial Neural Networks, CTA: Classification Tree Analysis, FDA: Flexible Discriminant Analysis, GAM: Generalized Additive Model, GBM: Generalised Boosting Models, GLM: Generalised Linear Models, MARS: Multivariate Adaptive Regression Splines, SRE: Surface Range Envelope, RF: Breiman’s Random Forest for classification and regression.
Eval. metric | Models | Testing data | Cutoff | Sensitivity | Specificity |
|---|---|---|---|---|---|
ESM with selected environmental layers | ESM with selected environmental layers | ESM with selected environmental layers | ESM with selected environmental layers | ||
TSS | GAM | 0.883 | 0.166 | 97.917 | 90.361 |
RF | 0.882 | 0.212 | 95.833 | 92.369 | |
GLM | 0.887 | 0.247 | 97.917 | 90.763 | |
GBM | 0.886 | 0.177 | 95.833 | 92.771 | |
CTA | 0.799 | 0.461 | 87.5 | 92.369 | |
ANN | 0.814 | 0.204 | 95.833 | 85.542 | |
SRE | 0.384 | 0.495 | 39.583 | 98.795 | |
FDA | 0.881 | 0.159 | 93.75 | 94.378 | |
MARS | 0.911 | 0.186 | 97.917 | 93.173 | |
ROC | GAM | 0.975 | 0.164 | 97.917 | 90.361 |
RF | 0.977 | 0.219 | 95.833 | 92.771 | |
GLM | 0.975 | 0.244 | 97.917 | 90.763 | |
GBM | 0.972 | 0.177 | 95.833 | 92.771 | |
CTA | 0.884 | 0.464 | 87.5 | 92.369 | |
ANN | 0.932 | 0.241 | 95.833 | 85.944 | |
SRE | 0.692 | 0.5 | 39.583 | 98.795 | |
FDA | 0.975 | 0.148 | 100 | 88.755 | |
MARS | 0.973 | 0.184 | 97.917 | 93.173 | |
KAPPA | GAM | 0.794 | 0.644 | 91.667 | 94.378 |
RF | 0.834 | 0.462 | 83.333 | 97.992 | |
GLM | 0.761 | 0.65 | 89.583 | 93.574 | |
GBM | 0.804 | 0.574 | 85.417 | 96.386 | |
CTA | 0.72 | 0.461 | 87.5 | 92.369 | |
ANN | 0.633 | 0.204 | 95.833 | 85.542 | |
SRE | 0.491 | 0.495 | 39.583 | 98.795 | |
FDA | 0.834 | 0.202 | 91.667 | 95.984 | |
MARS | 0.803 | 0.186 | 97.917 | 93.173 |