Table 5 ESM individual model performance. ESM: Ensemble model, TSS: True Skill Statistics, ROC: Reciever Operating Characteristics, KAPPA: Cohen’s Kappa, ANN: Artificial Neural Networks, CTA: Classification Tree Analysis, FDA: Flexible Discriminant Analysis, GAM: Generalized Additive Model, GBM: Generalised Boosting Models, GLM: Generalised Linear Models, MARS: Multivariate Adaptive Regression Splines, SRE: Surface Range Envelope, RF: Breiman’s Random Forest for classification and regression.

From: Revisiting current distribution and future habitat suitability models for the endemic Malabar Tree Toad (Pedostibes tuberculosus) using citizen science data

Eval. metric

Models

Testing data

Cutoff

Sensitivity

Specificity

ESM with selected environmental layers

ESM with selected environmental layers

ESM with selected environmental layers

ESM with selected environmental layers

TSS

GAM

0.883

0.166

97.917

90.361

RF

0.882

0.212

95.833

92.369

GLM

0.887

0.247

97.917

90.763

GBM

0.886

0.177

95.833

92.771

CTA

0.799

0.461

87.5

92.369

ANN

0.814

0.204

95.833

85.542

SRE

0.384

0.495

39.583

98.795

FDA

0.881

0.159

93.75

94.378

MARS

0.911

0.186

97.917

93.173

ROC

GAM

0.975

0.164

97.917

90.361

RF

0.977

0.219

95.833

92.771

GLM

0.975

0.244

97.917

90.763

GBM

0.972

0.177

95.833

92.771

CTA

0.884

0.464

87.5

92.369

ANN

0.932

0.241

95.833

85.944

SRE

0.692

0.5

39.583

98.795

FDA

0.975

0.148

100

88.755

MARS

0.973

0.184

97.917

93.173

KAPPA

GAM

0.794

0.644

91.667

94.378

RF

0.834

0.462

83.333

97.992

GLM

0.761

0.65

89.583

93.574

GBM

0.804

0.574

85.417

96.386

CTA

0.72

0.461

87.5

92.369

ANN

0.633

0.204

95.833

85.542

SRE

0.491

0.495

39.583

98.795

FDA

0.834

0.202

91.667

95.984

MARS

0.803

0.186

97.917

93.173