Table 28 The comparison results of the pressure vessel problem.

From: Learning cooking algorithm for solving global optimization problems

Algorithms

Optimal values for variables

Optimum weight

\(T_s\)

\(T_h\)

R

L

LCA

1.406E+00

2.712E+00

6.178E+01

2.609E+01

5.886E+03

TSA

7.857E–01

3.940E–01

4.035E+01

2.000E+02

5.972E+03

SSA

6.955E+00

3.033E+01

7.386E+01

5.460E+00

3.676E+05

MVO

1.187E+00

5.890E–01

6.135E+01

2.952E+01

7.125E+03

SCA

8.637E–01

4.103E–01

4.285E+01

2.000E+02

7.054E+03

GWO

7.817E–01

3.875E–01

4.045E+01

1.982E+02

5.902E+03

WOA

1.297E+00

5.923E–01

6.184E+01

2.543E+01

7.497E+03

GJO

1.232E+00

6.052E–01

6.342E+01

1.805E+01

7.202E+03

IGWO

7.786E–01

3.853E–01

4.034E+01

1.998E+02

5.888E+03

MWOA

8.149E–01

5.384E+00

4.204E+01

1.774E+02

2.163E+04

MTBO

7.842E–01

3.876E–01

4.063E+01

1.958E+02

5.897E+03

BWO

9.974E–01

5.062E–01

4.948E+01

1.033E+02

6.678E+03

HHO

9.434E–01

4.619E–01

4.841E+01

1.115E+02

6.262E+03

MGO

8.139E–01

4.023E–01

4.217E+01

1.757E+02

5.949E+03

SCSO

1.245E+00

6.155E–01

6.451E+01

1.312E+01

7.259E+03