Table 32 The comparison results of the speed reducer design problem.

From: Learning cooking algorithm for solving global optimization problems

Algorithms

Optimal values for variables

Optimum weight

b

m

x

\(l_1\)

\(l_2\)

\(d_1\)

\(d_2\)

LCA

3.502E+00

7.000E–01

2.517E+01

8.230E+00

8.300E+00

3.811E+00

5.457E+00

2.990E+03

TSA

3.515E+00

7.014E–01

1.701E+01

7.300E+00

7.799E+00

3.441E+00

5.301E+00

3.042E+03

SSA

3.490E+00

2.624E+00

2.807E+00

2.811E+00

3.406E+00

3.562E+00

3.439E+00

1.868E+16

MVO

3.501E+00

7.000E–01

1.700E+01

7.397E+00

7.905E+00

3.395E+00

5.287E+00

3.012E+03

SCA

3.517E+00

7.000E–01

1.700E+01

7.300E+00

8.300E+00

3.388E+00

5.500E+00

3.165E+03

GWO

3.504E+00

7.000E–01

1.700E+01

7.751E+00

7.841E+00

3.353E+00

5.288E+00

3.005E+03

WOA

3.600E+00

7.145E–01

1.768E+01

7.869E+00

7.718E+00

3.547E+00

5.287E+00

3.288E+03

GJO

3.512E+00

7.000E–01

1.700E+01

8.219E+00

8.140E+00

3.414E+00

5.287E+00

3.034E+03

IGWO

3.500E+00

7.000E–01

1.700E+01

7.300E+00

7.715E+00

3.350E+00

5.287E+00

2.994E+03

MWOA

3.500E+00

7.000E–01

1.700E+01

7.913E+00

7.821E+00

3.660E+00

5.335E+00

3.121E+03

MTBO

3.500E+00

7.000E–01

1.700E+01

7.300E+00

7.715E+00

3.350E+00

5.287E+00

2.994E+03

BWO

3.600E+00

7.000E–01

1.700E+01

7.300E+00

8.300E+00

3.361E+00

5.330E+00

3.077E+03

HHO

3.559E+00

7.000E–01

1.749E+01

7.300E+00

8.184E+00

3.426E+00

5.287E+00

3.134E+03

MGO

3.500E+00

7.000E–01

1.700E+01

7.300E+00

7.715E+00

3.350E+00

5.287E+00

2.994E+03

SCSO

3.500E+00

7.000E–01

1.700E+01

8.244E+00

8.072E+00

3.357E+00

5.287E+00

3.013E+03