Table 33 Statistical results of optimization algorithms in the speed reducer design problem.

From: Learning cooking algorithm for solving global optimization problems

\({\text {Algorithms}}\)

\({\text {Mean}}\)

\({\text {Std}}\)

\({\text {Minimum}}\)

\({\text {Maximum}}\)

\({\text {Median}}\)

LCA

2.991E+03

8.927E–01

2.990E+03

2.994E+03

2.990E+03

TSA

3.043E+03

9.916E+00

3.020E+03

3.058E+03

3.042E+03

SSA

1.968E+16

2.224E+15

1.641E+16

2.423E+16

1.930E+16

MVO

3.042E+03

1.998E+01

3.012E+03

3.094E+03

3.044E+03

SCA

3.117E+03

4.468E+01

3.050E+03

3.191E+03

3.110E+03

GWO

3.007E+03

4.017E+00

2.998E+03

3.013E+03

3.009E+03

WOA

3.247E+03

2.981E+02

3.019E+03

4.379E+03

3.161E+03

GJO

3.016E+03

6.880E+00

3.005E+03

3.034E+03

3.015E+03

IGWO

2.994E+03

4.440E–06

2.994E+03

2.994E+03

2.994E+03

MWOA

3.414E+03

6.050E+02

3.038E+03

5.256E+03

3.181E+03

MTBO

2.994E+03

1.348E–12

2.994E+03

2.994E+03

2.994E+03

BWO

3.078E+03

3.639E+01

3.030E+03

3.191E+03

3.074E+03

HHO

3.361E+03

4.559E+02

3.006E+03

4.492E+03

3.142E+03

MGO

2.994E+03

8.013E–13

2.994E+03

2.994E+03

2.994E+03

SCSO

3.006E+03

5.300E+00

2.997E+03

3.018E+03

3.006E+03