Table 34 Gear train design comparison results.

From: Learning cooking algorithm for solving global optimization problems

Algorithms

Optimal values for variables

Optimum weight

\(z_{1}\)

\(z_{2}\)

\(z_{3}\)

\(z_{4}\)

LCA

5.593E+01

1.435E+01

3.146E+01

5.593E+01

0.000E+00

TSA

5.535E+01

2.621E+01

1.723E+01

5.657E+01

9.901E–14

SSA

1.462E+01

2.251E+01

1.656E+01

5.790E+01

8.772E–02

MVO

4.592E+01

3.163E+01

1.257E+01

6.000E+01

8.957E–13

SCA

5.772E+01

1.203E+01

1.419E+01

2.049E+01

8.291E–10

GWO

5.037E+01

2.648E+01

1.434E+01

5.227E+01

1.240E–11

WOA

5.503E+01

3.185E+01

1.364E+01

5.470E+01

0.000E+00

GJO

5.778E+01

3.096E+01

1.200E+01

4.456E+01

5.081E–12

IGWO

5.468E+01

1.369E+01

2.879E+01

4.998E+01

8.180E–13

MWOA

5.546E+01

1.252E+01

1.995E+01

3.122E+01

0.000E+00

MTBO

5.906E+01

1.228E+01

3.253E+01

4.689E+01

1.360E–14

BWO

6.000E+01

4.328E+01

1.200E+01

6.000E+01

6.305E–12

MGO

5.308E+01

2.214E+01

1.371E+01

3.965E+01

7.861E–18

SCSO

2.829E+01

1.258E+01

1.200E+01

3.700E+01

1.112E–14