Table 38 Cantilever beam comparison results.

From: Learning cooking algorithm for solving global optimization problems

Algorithms

Optimal values for variables

Optimum weight

\(z_{1}\)

\(z_{2}\)

\(z_{3}\)

\(z_{4}\)

\(z_{5}\)

LCA

5.627E+00

5.392E+00

4.439E+00

3.433E+00

3.204E+00

1.3289

TSA

6.070E+00

5.335E+00

4.420E+00

3.552E+00

2.129E+00

1.3419

SSA

1.116E+01

3.392E+01

1.373E+01

5.215E+01

9.018E+00

7.4865

MVO

5.951E+00

5.432E+00

4.589E+00

3.453E+00

2.069E+00

1.3412

SCA

5.531E+00

4.942E+00

4.841E+00

3.842E+00

3.101E+00

1.3888

GWO

5.998E+00

5.315E+00

4.483E+00

3.503E+00

2.175E+00

1.3400

WOA

4.660E+00

1.078E+01

5.578E+00

3.112E+00

3.376E+00

1.7160

GJO

5.975E+00

5.320E+00

4.463E+00

3.542E+00

2.177E+00

1.3401

IGWO

6.016E+00

5.331E+00

4.481E+00

3.488E+00

2.158E+00

1.3399

MWOA

6.616E+00

4.950E+00

5.635E+00

3.890E+00

1.568E+00

1.4139

MTBO

6.022E+00

5.306E+00

4.495E+00

3.495E+00

2.156E+00

1.3399

BWO

5.853E+00

5.425E+00

4.707E+00

3.252E+00

2.383E+00

1.3491

HHO

5.870E+00

5.187E+00

4.596E+00

3.649E+00

2.202E+00

1.3419

MGO

6.001E+00

5.286E+00

4.509E+00

3.525E+00

2.153E+00

1.3399

SCSO

6.061E+00

5.279E+00

4.455E+00

3.518E+00

2.162E+00

1.3400