Table 4 Overall performances (%) of the proposed PND-Net built upon different standard base CNNs.

From: PND-Net: plant nutrition deficiency and disease classification using graph convolutional network

Dataset

Base CNN + GCN

Top-1 accuracy

Top-3 accuracy

Precision

Recall

F1-score

Banana

ResNet-50

90.00

98.34

90.00

90.00

90.00

Xception

89.25

98.27

90.00

89.00

89.00

Inception-V3

83.77

98.13

84.00

84.00

84.00

MobileNet-V2

83.99

97.80

84.00

84.00

83.00

Coffee

ResNet-50

89.52

97.00

89.00

89.00

89.00

Xception

90.54

98.67

90.00

90.00

90.00

Inception-V3

89.18

98.67

89.00

89.00

89.00

MobileNet-V2

89.86

98.33

90.00

89.00

89.00

Potato

ResNet-50

94.32

99.03

94.00

94.00

94.00

Xception

96.18

99.42

96.00

96.00

96.00

Inception-V3

96.05

99.64

96.00

96.00

96.00

MobileNet-V2

92.59

98.68

93.00

93.00

93.00

PlantDoc

ResNet-50

84.11

98.02

85.00

84.00

84.00

Xception

84.30

98.10

85.00

84.00

84.00

Inception-V3

81.00

98.05

81.00

81.00

81.00

MobileNet-V2

80.81

97.86

81.00

81.00

81.00

BreakHis 40\(\times \)

ResNet-50

95.50

99.00

95.00

95.00

95.00

Xception

94.83

99.00

95.00

95.00

95.00

Inception-V3

95.00

99.00

95.00

95.00

95.00

MobileNet-V2

94.00

99.00

94.00

94.00

94.00

BreakHis 100\(\times \)

ResNet-50

96.79

99.00

97.00

97.00

97.00

Xception

95.19

99.00

95.00

94.00

94.00

Inception-V3

95.67

99.00

96.00

96.00

96.00

MobileNet-V2

95.83

99.00

96.00

96.00

96.00

SIPaKMeD

ResNet-50

99.18

100.00

99.00

99.00

99.00

Xception

98.98

100.00

99.00

99.00

99.00

Inception-V3

98.37

100.00

98.00

98.00

98.00

MobileNet-V2

98.17

100.00

98.00

98.00

98.00

  1. The best top-1 accuracy (%) achieved on each dataset is given in bold.