Table 8 Comparison of classifiers in hybrid meta features based on different datasets (\(\%\)).

From: Hybrid framework for membrane protein type prediction based on the PSSM

Dataset

Method

Se

Sp

F-m

Mcc

OA

Dataset1

Xgboost

69.81

98.67

70.49

69.34

93.24

KNN

77.88

99.12

79.94

80.01

94.96

LightGBM

69.90

98.71

70.53

69.41

93.31

SVM

77.54

99.10

79.45

79.52

94.76

RF

77.23

99.06

72.65

72.37

94.39

Dataset2

Xgboost

55.54

97.20

44.76

45.47

83.57

KNN

57.16

98.43

68.46

58.93

91.01

LightGBM

47.11

96.99

52.57

53.24

88.21

SVM

55.27

98.38

58.91

58.78

91.12

RF

54.69

98.26

56.40

56.12

89.26

Dataset3

Xgboost

62.19

96.79

52.13

51.82

84.78

KNN

70.12

98.48

71.37

70.52

91.46

LightGBM

52.61

97.28

54.68

55.26

89.12

SVM

63.99

98.28

65.11

64.36

91.89

RF

68.63

98.44

66.98

66.77

90.68