Table 1 Detailed architecture of the ResNeXt-50 model.
Layer name | Operational details | Output size |
|---|---|---|
Input | – | 300 × 300 |
Conv1 | 7 × 7 Conv, 64, stride = 2 | 150 × 150 |
Max pool | 3 × 3 max pool, stride = 2 | – |
Conv2_x | \(\left\{ {\begin{array}{*{20}c} {1 \times 1 \;{\text{Conv}}, 128} \\ {3 \times 3\;{\text{Conv}}, 128} \\ {1 \times 1\;{\text{Conv}}, 256} \\ \end{array} } \right\} \times 3, \;{\text{C}} = 32\) | 75 × 75 |
Down-sampling | \(1 \times 1\) Conv, stride = 2 | – |
Conv3_x | \(\left\{ {\begin{array}{*{20}c} {1 \times 1 \;{\text{Conv}}, 256} \\ {3 \times 3\;{\text{Conv}}, 256} \\ {1 \times 1\;{\text{Conv}}, 512} \\ \end{array} } \right\} \times 4,\;{\text{C}} = 32\) | 38 × 38 |
Down-sampling | \(1 \times 1\) Conv, stride = 2 | – |
Conv4_x | \(\left\{ {\begin{array}{*{20}c} {1 \times 1\;{\text{Conv}}, 512} \\ {3 \times 3\;{\text{Conv}}, 512} \\ {1 \times 1\;{\text{Conv}}, 1024} \\ \end{array} } \right\} \times 6, \;{\text{C}} = 32\) | 19 × 19 |
Down-sampling | \(1 \times 1\) Conv, stride = 2 | – |
Conv5_x | \(\left\{ {\begin{array}{*{20}c} {1 \times 1\;{\text{Conv}}, 1024} \\ {3 \times 3\;{\text{Conv}}, 1024} \\ {1 \times 1\;{\text{Conv}}, 2048} \\ \end{array} } \right\} \times 3, \;{\text{C}} = 32\) | 10 × 10 |
Global average pool | ||
fc, Softmax | 1 × 1 |