Table 6 Statistical evaluation of various ML models for training and testing dataset after ML parameters optimization process.
ML model | Training | Testing | ||||
|---|---|---|---|---|---|---|
\(RMSE\) | \(MAE\) | \({R}^{2}\) | \(RMSE\) | \(MAE\) | \({R}^{2}\) | |
MLR | 2.735 | 2.161 | 0.928 | 2.619 | 2.037 | 0.921 |
DTR | 1.902 | 1.724 | 0.958 | 1.972 | 1.737 | 0.951 |
RFR | 1.773 | 1.703 | 0.964 | 1.837 | 1.774 | 0.963 |
SVR | 0.657 | 0.456 | 0.987 | 0.818 | 0.716 | 0.977 |
MLP | 0.486 | 0.369 | 0.991 | 0.503 | 0.397 | 0.99 |