Table 2 Evaluation of the suggested feature selection technique (bGGO) in comparison to other competitive techniques.
From: Greylag goose optimization and multilayer perceptron for enhancing lung cancer classification
bGGO | bSC | bMVO | bPSO | bWOA | bGWO | bFOA | |
|---|---|---|---|---|---|---|---|
Average error | 0.7743031 | 0.791503 | 0.805103 | 0.825303 | 0.825103 | 0.811603 | 0.823703 |
Average Select size | 0.7271031 | 0.927103 | 0.869503 | 0.927103 | 1.090503 | 0.849903 | 0.961603 |
Average Fitness | 0.8375031 | 0.853703 | 0.865103 | 0.852103 | 0.859903 | 0.859803 | 0.904003 |
Best Fitness | 0.7393031 | 0.774003 | 0.768403 | 0.832403 | 0.824003 | 0.837603 | 0.822703 |
Worst Fitness | 0.8378031 | 0.840903 | 0.883503 | 0.900103 | 0.900103 | 0.913803 | 0.920303 |
Standard deviation Fitness | 0.6598031 | 0.664503 | 0.666103 | 0.663903 | 0.666103 | 0.665103 | 0.700703 |