Table 6 Findings of optimization methods MLP model for the classifying lung cancer.

From: Greylag goose optimization and multilayer perceptron for enhancing lung cancer classification

Models

Accuracy

Sensitivity (TRP)

Specificity (TNP)

Pvalue (PPV)

Nvalue (NPV)

F-Score

AUC

GGO + MLP

0.983837

0.977337

0.990237

0.989957

0.977961

0.983607

0.993

SC + MLP

0.966184

0.966387

0.965986

0.965035

0.967302

0.96571

0.975

GWO + MLP

0.960879

0.961003

0.960758

0.959666

0.96206

0.960334

0.972

PSO + MLP

0.951087

0.949106

0.95302

0.951724

0.950469

0.950413

0.964

WOA + MLP

0.94086

0.949106

0.932983

0.931174

0.950469

0.940054

0.957

FOA + MLP

0.937287

0.943912

0.930707

0.931174

0.943526

0.9375

0.953

MVO + MLP

0.927978

0.933694

0.921986

0.926174

0.9299

0.929919

0.937