Table 1 Depth accuracy and error of different methods on the KITTI dataset.

From: Lightweight monocular depth estimation using a fusion-improved transformer

Methods

Abs Rel

Sq Rel

RMSE

RMSE log

\(\delta\)< 1.25

\(\delta\)< 1.252

\(\delta\)< 1.253

Params

GoNet[20]

0.149

1.060

5.567

0.226

0.796

0.935

0.975

31.6 M

DDVO[21]

0.151

1.257

5.583

0.228

0.810

0.936

0.974

28.1 M

Monodepth[11]

0.148

1.344

5.927

0.247

0.803

0.922

0.964

20.2 M

Monodepth2[12]

0.115

0.903

4.863

0.193

0.877

0.959

0.981

14.3 M

FastDepth[15]

0.150

0.890

5.321

0.207

0.808

0.945

0.981

3.96 M

R-MSFM6[22]

0.112

0.806

4.704

0.191

0.878

0.960

0.981

3.5 M

Lite-HR-Depth[23]

0.116

0.845

4.841

0.190

0.866

0.957

0.982

3.1 M

MonoFormer[24]

0.104

0.846

4.580

0.183

0.891

0.962

0.982

23.9 M+

Lite-Mono[25]

0.107

0.765

4.561

0.183

0.886

0.963

0.983

3.1 M

Ours

0.105

0.810

4.506

0.183

0.891

0.963

0.983

3.0 M

  1. Significant values are in bold.