Table 1 Depth accuracy and error of different methods on the KITTI dataset.
From: Lightweight monocular depth estimation using a fusion-improved transformer
Methods | Abs Rel | Sq Rel | RMSE | RMSE log | \(\delta\)< 1.25 | \(\delta\)< 1.252 | \(\delta\)< 1.253 | Params |
|---|---|---|---|---|---|---|---|---|
GoNet[20] | 0.149 | 1.060 | 5.567 | 0.226 | 0.796 | 0.935 | 0.975 | 31.6Â M |
DDVO[21] | 0.151 | 1.257 | 5.583 | 0.228 | 0.810 | 0.936 | 0.974 | 28.1Â M |
Monodepth[11] | 0.148 | 1.344 | 5.927 | 0.247 | 0.803 | 0.922 | 0.964 | 20.2Â M |
Monodepth2[12] | 0.115 | 0.903 | 4.863 | 0.193 | 0.877 | 0.959 | 0.981 | 14.3Â M |
FastDepth[15] | 0.150 | 0.890 | 5.321 | 0.207 | 0.808 | 0.945 | 0.981 | 3.96Â M |
R-MSFM6[22] | 0.112 | 0.806 | 4.704 | 0.191 | 0.878 | 0.960 | 0.981 | 3.5Â M |
Lite-HR-Depth[23] | 0.116 | 0.845 | 4.841 | 0.190 | 0.866 | 0.957 | 0.982 | 3.1Â M |
MonoFormer[24] | 0.104 | 0.846 | 4.580 | 0.183 | 0.891 | 0.962 | 0.982 | 23.9Â M+ |
Lite-Mono[25] | 0.107 | 0.765 | 4.561 | 0.183 | 0.886 | 0.963 | 0.983 | 3.1Â M |
Ours | 0.105 | 0.810 | 4.506 | 0.183 | 0.891 | 0.963 | 0.983 | 3.0Â M |