Table 1 Performance evaluation indexes of the deep learning network models.

From: Mineral prospectivity prediction based on convolutional neural network and ensemble learning

Networks model

Classes (0-Non-ore-bearing; 1-Ore-bearing)

Precision (%)

Recall (%)

F1-score(%)

Accuracy (%)

Mean precision(%)

Mean recall(%)

Mean F1-score(%)

CNN

LeNet

0

97.43

97.43

97.43

96.50

95.99

95.99

95.99

1

94.55

94.55

94.55

AlexNet

0

97.85

97.71

97.78

96.99

96.51

96.58

96.55

1

95.17

95.45

95.31

VGG 16

0

98.01

98.29

98.15

97.48

97.18

97.03

97.10

1

96.34

95.76

96.04

ResNet 50

0

97.87

98.57

98.22

97.57

97.40

97.01

97.20

1

96.92

95.45

96.18

Mobilenet

V2

0

98.15

98.29

98.22

97.57

97.25

97.18

97.21

1

96.35

96.06

96.20

VIT

0

97.99

97.42

97.70

96.89

96.30

95.59

95.94

1

94.61

93.76

94.18