Table 4 Model for calculating the reduction factor.
From: Axial compression stress-strain relationship of lithium slag rubber concrete
Index | Reduction Factor | Â |
|---|---|---|
Compressive strength | \(R{F_{\text{c}}}\left( {{S_{\text{L}}}} \right){\text{ = }} - 10.426{S_{\text{L}}}^{2}+2.883{S_{\text{L}}}+0.88\) | (5) |
| Â | \(R{F_{\text{c}}}\left( {{S_{\text{R}}}} \right){\text{ }}={\text{ }}(1 - 4.41{S_{\text{R}}}) \times {10^{1.81{S_{\text{R}}}}}\) | Â |
Elastic modulus | \(R{F_{\text{E}}}\left( {{S_{\text{L}}}} \right){\text{ = }} - 4.598{S_{\text{L}}}^{2}+1.197{S_{\text{L}}}+0.994\) | (6) |
| Â | \(R{F_{\text{E}}}\left( {{S_{\text{R}}}} \right){\text{ }}={\text{ }}(1 - 0.281{S_{\text{R}}}) \times {10^{ - 1.048{S_{\text{R}}}}}\) | Â |
Peak strain | \(R{F_{{\text{PS}}}}\left( {{S_{\text{L}}}} \right){\text{ = }} - 5.928{S_{\text{L}}}^{2}+1.82{S_{\text{L}}}+0.88\) | (7) |
| Â | \(R{F_{{\text{PS}}}}\left( {{S_{\text{R}}}} \right){\text{ }}={\text{ }}(1 - 0.281{S_{\text{R}}}) \times {10^{1.229{S_{\text{R}}}}}\) | Â |