Table 2 The deep ROC analysis of the machine learning models in stratified 5-repeated 5-fold cross-validation.

From: Machine learning-based diagnostic prediction of minimal change disease: model development study

FPR

[0,1]

[0.0.33]

[0.33,0.67]

[0.67,1]

Predicted probability

All

High

Medium

Low

TabPFN

 AUROCni

0.915 (0.047)

0.894 (0.050)

0.923 (0.083)

0.995 (0.024)

 Avg sensitivity

0.915 (0.047)

0.766 (0.115)

0.977 (0.032)

1 (0.001)

 Avg specificity

0.915 (0.047)

0.942 (0.025)

0.344 (0.291)

0.012 (0.059)

LightGBM

 AUROCni

0.911 (0.041)

0.887 (0.052)

0.941 (0.069)

0.979 (0.048)

 Avg sensitivity

0.911 (0.041)

0.757 (0.108)

0.976 (0.031)

0.998 (0.006)

 Avg specificity

0.911 (0.041)

0.933 (0.033)

0.244 (0.287)

0.041 (0.097)

Random forest

 AUROCni

0.906 (0.043)

0.882 (0.051)

0.922 (0.075)

0.985 (0.041)

 Avg sensitivity

0.906 (0.043)

0.742 (0.110)

0.974 (0.029)

0.999 (0.004)

 Avg specificity

0.906 (0.043)

0.933 (0.030)

0.296 (0.294)

0.0324 (0.090)

Artificial neural network

 AUROCni

0.880 (0.057)

0.864 (0.055)

0.866 (0.082)

0.964 (0.073)

 Avg sensitivity

0.880 (0.057)

0.698 (0.117)

0.945 (0.055)

0.996 (0.010)

 Avg specificity

0.880 (0.057)

0.929 (0.026)

0.470 (0.197)

0.062 (0.114)

Logistic regression

 AUROCni

0.888 (0.059)

0.883 (0.047)

0.868 (0.086)

0.946 (0.102)

 Avg sensitivity

0.888 (0.059)

0.734 (0.107)

0.937 (0.065)

0.992 (0.018)

 Avg specificity

0.888 (0.059)

0.941 (0.022)

0.397 (0.239)

0.058 (0.110)

  1. The mean of the metric for each fold of the 5-repeated 5-fold cross validation is calculated and the standard deviation is given in parentheses (). FPR: false positive rate, AUROCni: normalized group area under the receiver-operating characteristic curve, Avg sensitivity: average sensitivity, Avg specificity: average specificity.