Table 2 Strength-weighted values of \(G^*\).
Quotient graph | Vertex weight : \(w_v\) | Vertex strength : \(v_s\) |
|---|---|---|
\(G/Z_{1i}\) \(i \in \mathbb {N}_{m-1}\) | \(x_1 = 12i^2 - 2i\) \(x_2 = |V(G)| - x_1 - 4i\) | \(y_1 = 16i^2 - 6i\) \(y_2 = |E(G)| - y_1 - 8i\) |
\(G/Z_{2i}\) \(i \in \mathbb {N}_{n-m+1}\) | \(x_3 = 24mi +12m^2 -26m\) \(x_4 = |V(G)| - x_3 - 4m\) | \(y_3 = 32mi + 16m^2 - 38m - 2i+2\) \(y_4 = |E(G)| - y_3 - 8m\) |
\(G/O_{1i}\) \(i \in \mathbb {N}_{m}\) | \(x_5 = 12i^2 - 12i +3\) \(x_6 = |V(G)| - x_5\) | \(y_5 = 16i^2 - 20i + 6\) \(y_6 = |E(G)| - y_5 - (4i-2)\) |
\(G/O_{2i}\) \(i \in \mathbb {N}_{n-m}\) | \(x_7 = 24mi +12m^2 -12m\) \(x_8 = |V(G)| - x_7\) | \(y_7 = 32mi + 16m^2 - 20m - 2i +1\) \(y_8 = |E(G)| - y_7 - 4m\) |
\(G/V_i\) \(i \in \mathbb {N}_{2n-1}\) | \(x_9 = 12mi\) \(x_{10} = |V(G)| - x_9\) | \(y_9 = 16mi - 2m - i\) \(y_{10} = |E(G)| - y_9 - 2m\) |
\(G/H_i\) \(i \in \mathbb {N}_{2m-1}\) | \(x_{11} = 12ni\) \(x_{12} = |V(G)| - x_{11}\) | \(y_{11} = 16ni - 2n - i\) \(y_{12} = |E(G)| - y_{11} - 2n\) |