Table 4 Comparison of findings across previous studies.

From: CystNet: An AI driven model for PCOS detection using multilevel thresholding of ultrasound images

Authors

Year

Dataset

Feature extraction

Classification

Accuracy

Nilofer et al.38

2021

Kaggle PCOS US images

GLCM

ANN

97.50%

Gopalakrishnan et al.36

2021

Kaggle PCOS US images

GIST-MDR

SVM

93.82%

Alamoudi et al.37

2023

King Fahad Hospital US images

MobileNet

FC

82.46%

Rachana et al.19

2021

Kaggle PCOS US images

Entropy, Contrast, Energy, Homogeneity

K-NN

97%

Nakhua et al.60

2024

PCOSGen US images

GLCM

Hybrid ML

92%

Bedi et al.61

2023

MMOTU images

Attention Residual Unit

AResUNet

97%

Paramasivam et al.62

2024

Kaggle PCOS US images

SD_CNN

Hybrid ML

96.43%

Chitra et al.63

2023

Kaggle PCOS US images

-

Hybrid DL

95%

Proposed Approach A

-

Kaggle PCOS US images

CystNet

FC

96.54%

Proposed Approach B

-

Kaggle PCOS US images

CystNet

RF

97.75%

Proposed Approach A

-

PCOSGen US images

CystNet

FC

94.39%

Proposed Approach B

-

PCOSGen US images

CystNet

RF

96.12%

Proposed Approach A

-

MMOTU images

CystNet

FC

95.67%

Proposed Approach B

-

MMOTU images

CystNet

RF

97.23%

  1. Significant values are in bold.