Table 1 The number of basis elements of \(\mathcal {H} = \mathcal {H}_2 \otimes \mathcal {H}_2 \otimes \mathcal {H}_2\) that are included in the linear superposition (1) gives rise to a classification of three-qubit states7,8. Some of the representative states generated by such basis elements are associated with specific convex subspaces of the entanglement–polytope \(\mathcal {P} \subset \mathbb {R}^3\) shown in Figure 1, see27 and discussion in the main text. The class of fully separable states is represented by \(\vert 000 \rangle\) as a generic case, see details in Supplementary Information file. States of type 4d are represented by the vector \(\vert \psi _{4d} \rangle\) defined in (5).

From: A geometric formulation to measure global and genuine entanglement in three-qubit systems

Type

Basis product states

Subset \(\subseteq \mathcal {P}\)

1

\(\lbrace \vert 000 \rangle \rbrace\)

\(\vec {S}\)

2a-1

\(\lbrace \vert 101 \rangle , \vert 110 \rangle \rbrace\)

\(\overline{SB_{1}}\)

2a-2

\(\lbrace \vert 000 \rangle , \vert 101 \rangle \rbrace\)

\(\overline{SB_{2}}\)

2a-3

\(\lbrace \vert 000 \rangle , \vert 110 \rangle \rbrace\)

\(\overline{SB_{3}}\)

2b

\(\lbrace \vert 000 \rangle , \vert 111 \rangle \rbrace\)

\(\overline{SG}\)

3a

\(\lbrace \vert 000 \rangle , \vert 101 \rangle , \vert 110 \rangle \rbrace\)

Facets of \(SB_{1}B_{2}B_{3}\)

3b-1

\(\lbrace \vert 000 \rangle , \vert 100 \rangle , \vert 111 \rangle \rbrace\)

\(SB_{1}G\)

3b-2

\(\lbrace \vert 000 \rangle , \vert 101 \rangle , \vert 111 \rangle \rbrace\)

\(SB_{2}G\)

3b-3

\(\lbrace \vert 000 \rangle , \vert 110 \rangle , \vert 111 \rangle \rbrace\)

\(SB_{3}G\)

4a

\(\lbrace \vert 000 \rangle , \vert 100 \rangle , \vert 101 \rangle , \vert 110 \rangle \rbrace\)

\(SB_{1}B_{2}B_{3}\)

4b-1

\(\lbrace \vert 000 \rangle , \vert 100 \rangle , \vert 110 \rangle , \vert 111 \rangle \rbrace\)

\(\subset SB_{1}B_{3}G\)

4b-2

\(\lbrace \vert 000 \rangle , \vert 100 \rangle , \vert 101 \rangle , \vert 111 \rangle \rbrace\)

\(\subset SB_{1}B_{2}G\)

4c

\(\lbrace \vert 000 \rangle , \vert 101 \rangle , \vert 110 \rangle , \vert 111 \rangle \rbrace\)

\(SB_{1}B_{2}B_{3} \cup SB_{2}B_{3}G\)

4d

\(\lbrace \vert 001 \rangle , \vert 010 \rangle , \vert 100 \rangle , \vert 111 \rangle \rbrace\)

\(\mathcal {P}\)

5

\(\lbrace \vert 000 \rangle , \vert 100 \rangle , \vert 101 \rangle , \vert 110 \rangle ,\vert 111 \rangle \rbrace\)

\(\subset \mathcal {P}\)