Table 2 Unimodal benchmark functions used in the algorithm performance test experiments.

From: Enhanced artificial hummingbird algorithm with chaotic traversal flight

Name

Formulations

Search ranges

D

values

Sphere

\({F_1}(x) = \sum \limits _{i = 1}^n {x_i^2}\)

\([-100,100]\)

30

0

Schwefel 2.22

\({F_2}(x) = \sum \limits _{i = 1}^n {|{x_i}|} + \prod \limits _{i = 1}^n {|{x_i}|}\)

\([-10,10]\)

30

0

Schwefel 1.2

\({F_3}(x) = \sum \limits _{i = 1}^n {{{(\sum \limits _{j = 1}^i {{x_j}} )}^2}}\)

\([-100,100]\)

30

0

Schwefel 2.21

\({F_4}(x) = \max \{ |{x_i}|,1 \le i \le n\}\)

[-30,30]

30

0

Rosenbrock

\({F_5}(x) = \sum \limits _{i = 1}^{n - 1} {(100{{({x_{i + 1}} - {x_i})}^2}) + {{({x_i} - 1)}^2}}\)

\([-30,30]\)

30

0

Step

\({F_6}(x) = \sum \limits _{i = 1}^n {{{(\left\lfloor {{x_i} + 0.5} \right\rfloor )}^2}}\)

\([-100,100]\)

30

0