Table 2 Unimodal benchmark functions used in the algorithm performance test experiments.
From: Enhanced artificial hummingbird algorithm with chaotic traversal flight
Name | Formulations | Search ranges | D | values |
|---|---|---|---|---|
Sphere | \({F_1}(x) = \sum \limits _{i = 1}^n {x_i^2}\) | \([-100,100]\) | 30 | 0 |
Schwefel 2.22 | \({F_2}(x) = \sum \limits _{i = 1}^n {|{x_i}|} + \prod \limits _{i = 1}^n {|{x_i}|}\) | \([-10,10]\) | 30 | 0 |
Schwefel 1.2 | \({F_3}(x) = \sum \limits _{i = 1}^n {{{(\sum \limits _{j = 1}^i {{x_j}} )}^2}}\) | \([-100,100]\) | 30 | 0 |
Schwefel 2.21 | \({F_4}(x) = \max \{ |{x_i}|,1 \le i \le n\}\) | [-30,30] | 30 | 0 |
Rosenbrock | \({F_5}(x) = \sum \limits _{i = 1}^{n - 1} {(100{{({x_{i + 1}} - {x_i})}^2}) + {{({x_i} - 1)}^2}}\) | \([-30,30]\) | 30 | 0 |
Step | \({F_6}(x) = \sum \limits _{i = 1}^n {{{(\left\lfloor {{x_i} + 0.5} \right\rfloor )}^2}}\) | \([-100,100]\) | 30 | 0 |