Table 2 Comparison of base-calling performances between DNBSRN and other networks.

From: Deep learning enables the use of ultra-high-density array in DNBSEQ

 

Data

Metrics

EDSR

RDN

RCAN

IMDN

RFDN

RLFN

DNBSRN

SE50

Dataset1

Q30(%)

77.91

77.87

78.16

78.14

77.48

77.56

78.25

MR(%)

82.36

81.93

82.57

82.79

82.11

82.35

83.07

ESR(%)

79.76

79.90

80.45

80.37

80.17

80.33

80.54

Dataset2

Q30(%)

76.22

76.24

76.32

76.18

75.68

75.78

76.45

MR(%)

78.31

78.35

78.57

78.87

78.58

78.85

79.38

ESR(%)

77.21

77.44

77.69

77.62

77.42

77.55

78.01

Dataset3

Q30(%)

76.91

76.99

76.97

76.74

76.08

75.97

76.94

MR(%)

79.31

79.57

79.79

79.92

79.30

79.46

80.18

ESR(%)

77.74

78.17

78.36

78.12

77.71

77.63

78.30

Dataset4

Q30(%)

81.18

81.27

81.22

81.14

81.11

80.82

81.49

MR(%)

87.38

87.25

87.34

87.15

87.18

86.92

87.55

ESR(%)

82.48

82.56

82.62

82.38

82.51

82.21

82.73

PE100

Dataset5

Q30(%)

74.73

73.96

75.19

75.07

74.15

74.56

75.54

MR(%)

83.35

82.42

83.59

83.95

82.26

83.07

84.76

ESR(%)

76.70

75.91

77.68

77.81

77.67

78.07

78.30

Dataset6

Q30(%)

74.30

73.52

74.78

74.78

73.83

74.25

75.24

MR(%)

82.93

81.92

83.25

83.64

81.98

82.73

84.49

ESR(%)

76.31

75.50

77.34

77.61

77.44

77.85

78.08

Dataset7

Q30(%)

74.77

74.01

75.20

75.07

74.17

74.56

75.55

MR(%)

83.27

82.33

83.52

83.85

82.27

83.02

84.64

ESR(%)

76.83

76.01

77.72

77.89

77.76

78.16

78.37

Dataset8

Q30(%)

74.61

73.79

74.91

74.94

74.01

74.41

75.41

MR(%)

83.10

82.12

83.21

83.71

82.07

82.82

84.53

ESR(%)

76.68

75.77

77.47

77.74

77.59

77.99

78.24

  1. Bold is the best.