Table 4 Output results of neural networks optimized by different algorithms.

From: PID control algorithm based on multistrategy enhanced dung beetle optimizer and back propagation neural network for DC motor control

Algorithm

Parameters

Best

Worst

Mean

Standard deviation

EDBO-BP-PID

\({K_p}\)

30.0000

29.9309

29.9967

0.0117

\({K_i}\)

6.0237

8.1161

7.1638

0.6725

\({K_d}\)

0.0171

0.1415

0.0421

0.0427

\(\eta\)

0.0491

0.0697

0.0626

0.0056

\(\alpha\)

0.0296

0.2883

0.0983

0.1292

DBO-BP-PID

\({K_p}\)

25.0000

20.9121

24.9591

0.4087

\({K_i}\)

4.2536

3.3388

4.2387

0.1133

\({K_d}\)

0.0100

0.1986

0.0220

0.0364

\(\eta\)

0.0948

0.0394

0.0936

0.0083

\(\alpha\)

0.0025

0.0217

0.0046

0.0056

PSO-BP-PID

\({K_p}\)

25.0000

23.3558

24.9815

0.1654

\({K_i}\)

4.1027

25.0000

24.9815

0.1654

\({K_d}\)

0.0100

25.0000

24.9815

0.1654

\(\eta\)

0.0014

0.0826

0.0045

0.0119

\(\alpha\)

0.0787

0.1661

0.0773

0.0136

EDBO-PID

\({K_p}\)

30.0000

26.5768

28.1226

0.4887

\({K_i}\)

5.0018

5.2710

5.0037

0.0276

\({K_d}\)

0.1335

0.2000

0.1373

0.0102

DBO-PID

\({K_p}\)

30.0000

24.6680

29.9466

0.5331

\({K_i}\)

5.1040

3.8568

5.0864

0.1301

\({K_d}\)

0.2000

0.1647

0.1996

0.0035

PSO- PID

\({K_p}\)

25.0000

22.5365

24.7527

0.7787

\({K_i}\)

4.1674

3.7249

4.1275

0.1421

\({K_d}\)

0.0847

0.1048

0.0848

0.0076

BP- PID

\({K_p}\)

25.0000

19.5365

20.7527

0.8425

\({K_i}\)

4.1971

3.2258

4.1985

0.2674

\({K_d}\)

0.1267

0.1022

0.0957

0.0121