Table 3 Comparative analysis of SSODE-GCNDM approach with recent models59,60,61,62,63.

From: Hybridization of synergistic swarm and differential evolution with graph convolutional network for distributed denial of service detection and mitigation in IoT environment

Classifiers

\(\:\varvec{A}\varvec{c}\varvec{c}{\varvec{u}}_{\varvec{y}}\)

\(\:\varvec{P}\varvec{r}\varvec{e}{\varvec{c}}_{\varvec{n}}\)

\(\:\varvec{R}\varvec{e}\varvec{c}{\varvec{a}}_{\varvec{l}}\)

\(\:{\varvec{F}}_{\varvec{m}\varvec{e}\varvec{a}\varvec{s}\varvec{u}\varvec{r}\varvec{e}}\)

LR

91.10

91.00

91.00

91.00

KNN

97.00

97.00

97.00

97.00

RF

98.54

98.52

98.22

98.79

DT

98.36

98.64

98.24

97.82

AdaBoost

98.09

98.08

98.24

98.35

XGBoost

98.34

98.65

98.51

98.46

MLP Classifier

98.98

98.67

98.47

98.61

DNN

99.37

99.17

98.97

98.82

QCNN

99.25

99.12

99.15

98.59

COA-GS-IDNN

98.71

99.41

98.48

98.70

GWO-LSTM

99.10

98.87

98.70

98.82

AE

98.95

98.82

99.17

98.82

SSODE-GCNDM

99.62

99.72

99.62

99.67