Table 18 Optimization results of different algorithms on Robot Gripper problem.

From: Adaptive dynamic crayfish algorithm with multi-enhanced strategy for global high-dimensional optimization and real-engineering problems

Algorithm

\(\:{\varvec{x}}_{1}\)

\(\:{\varvec{x}}_{2}\)

\(\:{\varvec{x}}_{3}\)

\(\:{\varvec{x}}_{4}\)

\(\:{\varvec{x}}_{5}\)

\(\:{\varvec{x}}_{6}\)

\(\:{\varvec{x}}_{7}\)

Optimum Cost

AD-COA-L

150

149.305453

199.9876

0.554889

111.5646

100.3744

2.508223

2.525423

COA

149.9876

127.240596

194.5136

22.13016

149.9876

121.3282

2.650971

3.220764

GJO

149.9876

149.846886

200

0

149.1175

103.3929

2.365144

2.592627

RSA

149.9876

149.9876

199.9876

0

149.9876

106.9643

2.287727

4.897705

WOA

149.9873

147.639939

158.7813

0

32.03828

151.2824

1.866606

4.163875

GWO

149.3097

149.150576

194.2868

0

84.63068

104.6169

1.987486

2.694334

SSA

149.0688

150

198.9275

0.212219

111.5646

104.7142

2.124441

2.631094

HHO

150

149.826237

197.2751

0

142.3795

105.1166

2.336818

2.659223

PSO

149.9876

97.9795128

186.8842

49.9876

149.9876

135.7171

3.1276

4.037625

SHO

129.61

129.467413

100.6067

0

9.9876

100.5476

1.402619

6.293852

WSO

149.8163

149.137294

200

0.541857

125.9246

101.6464

2.171224

2.558456

jDE

149.9789

149.816348

199.9329

0.032755

148.9041

100.9544

2.279773

2.533071

ASMA

133.9786

105.02752

147.399

14.01085

109.4035

178.4849

2.895224

7.194506