Table 1 Performance evaluation of recommendation approaches constructed with the Fed-FR-MVD framework compared to other methods.
From: Federated cross-view e-commerce recommendation based on feature rescaling
Precision@10 | Recall@10 | HR@10 | NDCG@10 | F1@10 | MRR@10 | Coverage@10 | AUC | |
|---|---|---|---|---|---|---|---|---|
T-SV (V1) | 0.46 | 0.375 | 0.56 | 0.61 | 0.42 | 0.46 | 0.75 | 0.8 |
T-SV (V2) | 0.45 | 0.365 | 0.55 | 0.6 | 0.41 | 0.45 | 0.74 | 0.79 |
Fed-SV (V1) | 0.43 | 0.34 | 0.535 | 0.585 | 0.385 | 0.43 | 0.73 | 0.78 |
Fed-SV (V2) | 0.42 | 0.33 | 0.525 | 0.575 | 0.375 | 0.42 | 0.72 | 0.77 |
FED-MVMF | 0.44 | 0.35 | 0.545 | 0.595 | 0.395 | 0.44 | 0.74 | 0.79 |
FL-MV-DSSM | 0.45 | 0.355 | 0.55 | 0.6 | 0.405 | 0.45 | 0.75 | 0.8 |
SEMI-FL-MV-DSSM | 0.445 | 0.35 | 0.545 | 0.595 | 0.4 | 0.445 | 0.745 | 0.795 |
Fed-FR-MVD | 0.47 | 0.37 | 0.565 | 0.615 | 0.425 | 0.47 | 0.765 | 0.815 |
FedCT | 0.455 | 0.36 | 0.555 | 0.605 | 0.41 | 0.455 | 0.755 | 0.805 |
FedCDR | 0.465 | 0.365 | 0.56 | 0.61 | 0.42 | 0.465 | 0.76 | 0.81 |