Table 3 Comparison of Precision rates (%).

From: A framework for hardware trojan detection based on contrastive learning

 

Method

T100

T700

T800

T500

T1900

T1600

T600

T2000

T2100

Supervised learning

KNN

59.38

66.67

70.49

97.62

100

100

100

100

67.74

Naive bayes

59.04

61.54

64.38

75.00

100

100

100

100

100

Decision trees

76.92

80.00

78.95

94.12

100

100

100

100

83.72

Random forests

72.31

83.05

80.36

100

100

100

100

100

92.59

SVM

96.15

86.21

100

100

100

100

100

100

92.31

GoogLeNet

100

98.04

98.00

100

100

100

100

100

72.73

ResNet

100

100

100

100

100

100

100

100

100

VIT

63.64

94.44

75.47

100

100

100

100

100

84.21

Swin Transformer

85.71

52.94

63.16

53.26

53.75

53.16

57.14

54.55

66.67

Unsupervised learning

K-Means

66.67

68.75

74.07

59.52

100

100

100

100

62.50

K-Medoids

66.18

66.67

74.07

59.52

100

100

100

100

62.50

Hierarchical clustering

59.76

59.26

60.24

60.98

100

100

100

100

100

FCM

66.67

68.25

70.00

60.47

100

100

100

100

60.98

DBSCAN

n/a

51.02

n/a

100

100

100

n/a

n/a

n/a

Spectral clustering

68.42

75.00

76.60

59.52

59.52

59.52

59.52

100

60.98

Our Proposal

96.15

97.92

98.04

100

100

100

100

100

93.33