Table 4 Comparison of F1 scores.

From: A framework for hardware trojan detection based on contrastive learning

 

Method

T100

T700

T800

T500

T1900

T1600

T600

T2000

T2100

Supervised learning

KNN

0.6667

0.7586

0.7748

0.8913

1

1

1

1

0.5185

Naive bayes

0.7368

0.75

0.7642

0.1111

1

1

1

1

0.1481

Decision trees

0.7843

0.8727

0.8411

0.9505

1

1

1

1

0.7742

Random forests

0.8174

0.8991

0.8491

0.9691

1

1

1

1

0.6494

SVM

0.9804

0.9259

1

1

1

1

1

1

0.381

GoogLeNet

1

0.9901

0.98

1

1

1

1

1

0.5783

ResNet

1

1

1

1

1

1

1

1

1

VIT

0.7717

0.7907

0.7767

0.6842

1

1

1

1

0.4638

Swin Transformer

0.2105

0.6667

0.3478

0.6901

0.6615

0.6512

0.4103

0.6957

0.3944

Unsupervised learning

K-Means

0.7273

0.7719

0.7692

0.5435

1

1

1

1

0.5556

K-Medoids

0.7627

0.7731

0.7692

0.5435

1

1

1

1

0.5556

Hierarchical clustering

0.7424

0.7328

0.7519

0.5495

1

1

1

1

0.1132

FCM

0.7434

0.7611

0.7636

0.5591

1

1

1

1

0.5495

DBSCAN

n/a

0.6757

n/a

0.0392

1

1

n/a

n/a

n/a

Spectral clustering

0.729

0.7021

0.7423

0.5435

0.7463

0.7463

0.7463

0.3333

0.5495

Our Proposal

0.9804

0.9592

0.9901

1

1

1

1

1

0.8842