Table 1 The output power and mode conditions of TPS.

From: Transient current balancing modulation for seamless load step response in a dual-active-bridge converter with triple phase-shift control

Mode conditions

Output power \(P_{o}\)

Normalized peak current \(I_{peak}\)

1 (\(0\leqslant D_1\leqslant D_2\leqslant D_2+D_3\leqslant 1\))

\(\begin{aligned} & 2P_{n} (2D_{2} - D_{1} + D_{3} - D_{1}^{2} - D_{2}^{2} \\ & \quad - D_{3}^{2} + 2D_{1} D_{2} + D_{1} D_{3} - 2D_{2} D_{3} ) \\ \end{aligned}\)

\((1-D_1+M(2D_2+D_3-1))\)

2 (\(0\leqslant D_2\leqslant D_1\leqslant D_2+D_3\leqslant 1\))

\(\begin{aligned} & 2P_{n} (2D_{2} - D_{1} + D_{3} - D_{2}^{2} \\ & \quad - D_{3}^{2} + 2D_{1} D_{2} - 2D_{2} D_{3} ) \\ \end{aligned}\)

\((1-D_1+M(2D_2+D_3-1))\)

3 (\(0\leqslant D_2\leqslant D_2+D_3\leqslant D_1\leqslant 1\))

\(\begin{aligned} &2P_{n} (2D_{2} - D_{1} + D_{3} \\ & \quad - D_{1}^{2} - 2D_{1} D_{2} - D_{1} D_{3} ) \\ \end{aligned}\)

\((1-D_1+M(2D_2+D_3-1))\)

4 (\(0\leqslant D_2+D_3-1\leqslant D_2\leqslant D_1\leqslant 1\))

\(2P_n(-D_1-D_3+D_1D_3+1)\)

\((1-D_1+M(1-D_3))\)

5 (\(0\leqslant D_2+D_3-1\leqslant D_1\leqslant D_2\leqslant 1\))

\(\begin{aligned} &2P_{n} ( - D_{1} - D_{3} - D_{1}^{2} - D_{2}^{2} \\ & \quad + 2D_{1} D_{2} + D_{1} D_{3} + 1) \\ \end{aligned}\)

\((1-D_1+M(1-D_3))\)

  1. *\(P_n=\frac{V_{in}n_tV{out}}{8f_sL_k}\),\(M=\frac{n_tV_{out}}{V_{in}}\)