Table 7 Comparative performance of three pre-trained networks using different ML classifiers

From: A comprehensive analysis of deep learning and transfer learning techniques for skin cancer classification

Pretrained model

ML classifier

TP

FP

FN

TN

Precision

Sensitivity

Accuracy

F-score

ResNet-18

SVM

310

46

50

254

0.87079

0.86111

0.85455

0.86592

DT

294

72

66

228

0.80328

0.81667

0.79091

0.80992

KNN

308

56

52

244

0.84615

0.85556

0.83636

0.85083

Naïve bayes

281

42

79

258

0.86997

0.78056

0.81667

0.82284

VGG-19

SVM

297

64

63

236

0.82271

0.8250

0.80758

0.82386

DT

261

79

99

221

0.76765

0.7250

0.7303

0.74571

KNN

292

81

68

219

0.78284

0.81111

0.77424

0.79673

Naïve bayes

257

79

103

221

0.76488

0.71389

0.72424

0.73851

MobileNet V2

SVM

334

23

26

277

0.93557

0.92778

0.92575

0.93165

 

DT

282

77

78

223

0.78552

0.78333

0.76515

0.78442

 

KNN

320

66

40

234

0.82902

0.88889

0.83939

0.83939

 

Naïve bayes

225

73

135

224

0.75503

0.625

0.75667

0.68389