Table 7 Comparative performance of three pre-trained networks using different ML classifiers
Pretrained model | ML classifier | TP | FP | FN | TN | Precision | Sensitivity | Accuracy | F-score |
|---|---|---|---|---|---|---|---|---|---|
ResNet-18 | SVM | 310 | 46 | 50 | 254 | 0.87079 | 0.86111 | 0.85455 | 0.86592 |
DT | 294 | 72 | 66 | 228 | 0.80328 | 0.81667 | 0.79091 | 0.80992 | |
KNN | 308 | 56 | 52 | 244 | 0.84615 | 0.85556 | 0.83636 | 0.85083 | |
Naïve bayes | 281 | 42 | 79 | 258 | 0.86997 | 0.78056 | 0.81667 | 0.82284 | |
VGG-19 | SVM | 297 | 64 | 63 | 236 | 0.82271 | 0.8250 | 0.80758 | 0.82386 |
DT | 261 | 79 | 99 | 221 | 0.76765 | 0.7250 | 0.7303 | 0.74571 | |
KNN | 292 | 81 | 68 | 219 | 0.78284 | 0.81111 | 0.77424 | 0.79673 | |
Naïve bayes | 257 | 79 | 103 | 221 | 0.76488 | 0.71389 | 0.72424 | 0.73851 | |
MobileNet V2 | SVM | 334 | 23 | 26 | 277 | 0.93557 | 0.92778 | 0.92575 | 0.93165 |
DT | 282 | 77 | 78 | 223 | 0.78552 | 0.78333 | 0.76515 | 0.78442 | |
KNN | 320 | 66 | 40 | 234 | 0.82902 | 0.88889 | 0.83939 | 0.83939 | |
Naïve bayes | 225 | 73 | 135 | 224 | 0.75503 | 0.625 | 0.75667 | 0.68389 |