Table 8 Comparison of the hybrid model with various classifier
Pretrained model | ML Classifier | TP | FN | FP | TN | Sensitivity | Precision | Accuracy | F-score |
|---|---|---|---|---|---|---|---|---|---|
ResNet-18 + VGG-19 | SVM | 330 | 42 | 30 | 258 | 0.8871 | 0.91667 | 0.89091 | 0.90164 |
DT | 262 | 77 | 98 | 223 | 0.77286 | 0.72778 | 0.73485 | 0.74964 | |
KNN | 310 | 55 | 50 | 245 | 0.84932 | 0.86111 | 0.84091 | 0.85517 | |
Naïve bayes | 270 | 79 | 90 | 221 | 0.77364 | 0.7500 | 0.74394 | 0.76164 | |
VGG-19 + MobileNet V2 | SVM | 339 | 30 | 21 | 270 | 0.91869 | 0.94167 | 0.92272 | 0.93001 |
DT | 282 | 92 | 78 | 208 | 0.75401 | 0.78333 | 0.74242 | 0.76839 | |
KNN | 325 | 75 | 35 | 225 | 0.8125 | 0.90278 | 0.83333 | 0.85526 | |
Naïve bayes | 233 | 88 | 127 | 212 | 0.72586 | 0.64722 | 0.67424 | 0.68429 | |
MobileNet V2 + ResNet-18 | SVM | 340 | 20 | 27 | 273 | 0.94444 | 0.92643 | 0.92878 | 0.93534 |
DT | 287 | 70 | 77 | 230 | 0.8017 | 0.78611 | 0.77727 | 0.79383 | |
KNN | 319 | 65 | 41 | 235 | 0.83073 | 0.88611 | 0.83939 | 0.85753 | |
Naïve bayes | 225 | 73 | 135 | 224 | 0.75503 | 0.6250 | 0.75667 | 0.68389 |