Table 2 Pruning results of AlexNet on CIFAR-10. The best pruning results are bolded, and the worst results are underlined.

From: A multi-agent reinforcement learning based approach for automatic filter pruning

\(\textrm{Imp}(\cdot )\)

Pruning rate: 50%

Acc.(pruned)

Acc.(fine-tuned)

Filters

Params(M)

FLOPs(M)

 

Base

0.8585

–

1152

2.714826

39.823296

\(\varvec{w}_{i,j}\)

Weight

0.8516

0.8480[98.78%]

574

0.871555

14.119357

Taylor

0.8203

0.8373[97.53%]

551

0.754758

14.956772

\(\varvec{F}_{i,j}\)

IB

0.7734

0.8413[98.00%]

570

0.880309

18.481240

BN

0.8438

0.8470[98.66%]

560

0.827679

18.891221

Gradient

0.8438

0.8520[99.24%]

575

0.885663

21.158055

\(\varvec{A}_{i,j}\)

APoP

0.8516

0.8489[98.88%]

550

0.860180

20.911694

\(\textrm{Imp}(\cdot )\)

pruning rate: 60%

Acc.(pruned)

Acc.(fine-tuned)

Filters

Params(M)

FLOPs(M)

 

Base

0.8585

–

1152

2.714826

39.823296

\(\varvec{w}_{i,j}\)

Weight

0.8906

0.8472[98.68%]

459

0.596856

15.469136

Taylor

0.8047

0.8349[97.25%]

446

0.647585

16.149933

\(\varvec{F}_{i,j}\)

IB

0.7969

0.8346[97.21%]

454

0.615360

15.795638

BN

0.7969

0.8452[98.45%]

456

0.631417

16.397015

Gradient

0.7969

0.8353[97.30%]

460

0.633874

13.138188

\(\varvec{A}_{i,j}\)

APoP

0.7656

0.8423[98.11%]

455

0.658449

16.962633

\(\textrm{Imp}(\cdot )\)

pruning rate: 70%

Acc.(pruned)

Acc.(fine-tuned)

Filters

Params(M)

FLOPs(M)

 

Base

0.8585

–

1152

2.714826

39.823296

\(\varvec{w}_{i,j}\)

Weight

0.8047

0.8321[96.92%]

345

0.414934

7.052608

Taylor

0.7109

0.8171[95.18%]

337

0.393662

6.878678

\(\varvec{F}_{i,j}\)

IB

0.6250

0.7799[90.84%]

328

0.380263

7.279463

BN

0.7891

0.8326[96.98%]

340

0.449226

12.486408

Gradient

0.7812

0.8366[97.45%]

336

0.471698

15.172924

\(\varvec{A}_{i,j}\)

APoP

0.6328

0.8204[95.56%]

334

0.408761

9.024843