Table 3 Pruning results of VGG-16 on CIFAR-100. The best pruning results are bolded, and the worst results are underlined.

From: A multi-agent reinforcement learning based approach for automatic filter pruning

\(\textrm{Imp}(\cdot )\)

pruning rate: 50%

Acc.(pruned)

Acc.(fine-tuned)

Filters

Params(M)

FLOPs(M)

 

Base

0.8961

–

4224

14.941732

314.524672

\(\varvec{w}_{i,j}\)

Weight

0.8672

0.8856[98.82%]

2020

3.043907

135.09748

Taylor

0.8281

0.8755[97.70%]

2026

3.073754

100.467832

\(\varvec{F}_{i,j}\)

IB

0.7969

0.8737[97.50%]

2097

3.313371

137.484096

BN

0.9062

0.8876[99.05%]

2099

3.008191

167.201600

Gradient

0.8047

0.8809[98.30%]

2095

3.264122

136.683472

\(\varvec{A}_{i,j}\)

APoP

0.7969

0.8786[98.04%]

2025

3.187321

160.232956

\(\textrm{Imp}(\cdot )\)

pruning rate: 60%

Acc.(pruned)

Acc.(fine-tuned)

Filters

Params(M)

FLOPs(M)

 

Base

0.8961

–

4224

14.941732

314.524672

\(\varvec{w}_{i,j}\)

Weight

0.7969

0.8773[97.90%]

1611

2.117810

72.620072

Taylor

0.8594

0.8790[98.09%]

1675

2.131325

121.722136

\(\varvec{F}_{i,j}\)

IB

0.6250

0.8665[96.69%]

1673

2.582921

98.543556

BN

0.8203

0.8759[97.74%]

1619

1.911082

71.725748

Gradient

0.7578

0.8718[97.28%]

1660

2.069356

84.059268

\(\varvec{A}_{i,j}\)

APoP

0.6016

0.8681[98.11%]

1647

2.051498

96.258680

\(\textrm{Imp}(\cdot )\)

pruning rate: 70%

Acc.(pruned)

Acc.(fine-tuned)

Filters

Params(M)

FLOPs(M)

 

Base

0.8961

–

4224

14.941732

314.524672

\(\varvec{w}_{i,j}\)

Weight

0.6406

0.8657[96.60%]

1220

0.889273

51.890312

Taylor

0.7266

0.8727[97.39%]

1193

1.075607

72.818532

\(\varvec{F}_{i,j}\)

IB

0.4688

0.8626[96.26%]

1259

1.052788

88.585496

BN

0.7656

0.8707[97.16%]

1238

1.286112

50.040904

Gradient

0.7109

0.8730[97.42%]

1220

1.267270

92.931200

\(\varvec{A}_{i,j}\)

APoP

0.3828

0.8559[95.51%]

1246

1.282633

45.668076