Table 4 Comparison and improvement results of backbone networks.

From: YOLO-STOD: an industrial conveyor belt tear detection model based on Yolov5 algorithm

Method

Accuracy (%)

Recall (%)

F1 (%)

Map (%)

FPS

GFLOPs/G

Params/M

Yolov5s

83.6

86.9

85.22

88.9

173.898

15.8

7.02

Yolov5s-BiFPN

84

88.2

86.04

88.7

170.631

16.4

7.16

Yolov5s-CBAM

83.8

86.4

85.08

89.9

155.329

15.9

7.06

Yolov5s-EfficientNet

83.1

88.4

85.66

90.2

122.012

1.8

1.41

Yolov5s-DconV2

81.1

88.6

84.68

87.6

151.723

13.6

7.07

Yolov5s-C2f

81.4

87.1

84.14

88.5

150.492

17.8

7.92

Yolov5s-FasterNet

79

88.4

83.42

87.2

150.284

15.1

7.29

Yolov5s-SimAm

80.1

90.7

85.08

88.2

172.746

15.8

7.01

Yolov5s-RepVGGNet

78.3

84.5

81.28

85.3

170.566

6.1

1.87

Yolov5s-CotNet

81

89.1

84.86

87.7

143.105

15.7

7.00

Yolov5s-BotNet

83.6

91.3

87.28

90.8

176.575

20.7

7.68

  1. Significance values are in bold.