Table 3 Hyperparameters of ML classifiers.

From: SpectroFusionNet a CNN approach utilizing spectrogram fusion for electric guitar play recognition

Model category

Hyperparameter

Possible settings

Best setting

Random forest

Number of trees

10, 50, 100, 200

200

Maximum depth

None, 10, 20, 30

None

Bootstrap

True, false

True

SVM

Kernel

Linear, RBF

RBF

C (regularization)

0.1, 1, 10

10

Gamma

Scale, auto

Scale

k-NN

Number of neighbors

3, 5, 7

3

Weights

Uniform, Distance

Distance

LMT

Class weights

1:1, 1:2, 1:3

1:1

Naive Bayes

Var smoothing

1e − 09, 1e − 08

1e − 09

MLP

Hidden layer sizes

(50,), (100,)

100

Activation

ReLU, Tanh

ReLU

Solver

LBFGS, Adam

Adam

Decision tree

Criterion

Gini, Entropy

Gini

Maximum depth

None, 10, 20

None

Gradient booster

Number of estimators

50, 100

100

Learning rate

0.01, 0.1

0.1

AdaBoost

Number of estimators

50, 100

100

Algorithm

SAMME, SAMME.R

SAMME.R