Table 5 Accuracy scores (in %) comparison of spectrograms and hybrid models.

From: SpectroFusionNet a CNN approach utilizing spectrogram fusion for electric guitar play recognition

ML classifiers

\(\:{S}_{M}\)

\(\:{S}_{C}\)

\(\:{S}_{G}\)

MobileNetV2

Inception V3

ResNet50

MobileNetV2

Inception V3

ResNet50

MobileNetV2

Inception V3

ResNet50

Random forest

89.47

83.33

93.49

81.58

78.07

80.70

78.95

78.95

85.09

SVM

93.86

89.47

95.37

82.46

86.24

83.33

87.72

86.84

89.47

KNN

94.74

85.96

92.11

73.68

69.30

76.32

85.09

79.82

78.07

LMT

95.59

92.11

96.49

85.09

84.21

87.72

85.09

89.35

90.35

Naive Bayes

71.93

78.07

70.18

56.14

62.28

50.00

54.39

63.16

59.65

Linear SVM

95.61

92.98

94.37

81.58

86.47

85.96

90.35

88.60

87.72

MLP

92.11

88.60

96.25

83.33

85.09

82.46

85.09

87.72

89.47

Decision tree

60.53

63.16

84.21

48.25

57.02

58.77

55.26

52.63

58.77

Gradient booster

83.33

83.33

90.35

71.05

78.07

78.95

67.54

64.91

78.07

Adaboost

24.56

22.81

44.74

24.56

28.07

31.58

31.58

24.56

24.56