Table 5 Accuracy scores (in %) comparison of spectrograms and hybrid models.
From: SpectroFusionNet a CNN approach utilizing spectrogram fusion for electric guitar play recognition
ML classifiers | \(\:{S}_{M}\) | \(\:{S}_{C}\) | \(\:{S}_{G}\) | ||||||
|---|---|---|---|---|---|---|---|---|---|
MobileNetV2 | Inception V3 | ResNet50 | MobileNetV2 | Inception V3 | ResNet50 | MobileNetV2 | Inception V3 | ResNet50 | |
Random forest | 89.47 | 83.33 | 93.49 | 81.58 | 78.07 | 80.70 | 78.95 | 78.95 | 85.09 |
SVM | 93.86 | 89.47 | 95.37 | 82.46 | 86.24 | 83.33 | 87.72 | 86.84 | 89.47 |
KNN | 94.74 | 85.96 | 92.11 | 73.68 | 69.30 | 76.32 | 85.09 | 79.82 | 78.07 |
LMT | 95.59 | 92.11 | 96.49 | 85.09 | 84.21 | 87.72 | 85.09 | 89.35 | 90.35 |
Naive Bayes | 71.93 | 78.07 | 70.18 | 56.14 | 62.28 | 50.00 | 54.39 | 63.16 | 59.65 |
Linear SVM | 95.61 | 92.98 | 94.37 | 81.58 | 86.47 | 85.96 | 90.35 | 88.60 | 87.72 |
MLP | 92.11 | 88.60 | 96.25 | 83.33 | 85.09 | 82.46 | 85.09 | 87.72 | 89.47 |
Decision tree | 60.53 | 63.16 | 84.21 | 48.25 | 57.02 | 58.77 | 55.26 | 52.63 | 58.77 |
Gradient booster | 83.33 | 83.33 | 90.35 | 71.05 | 78.07 | 78.95 | 67.54 | 64.91 | 78.07 |
Adaboost | 24.56 | 22.81 | 44.74 | 24.56 | 28.07 | 31.58 | 31.58 | 24.56 | 24.56 |