Table 6 Accuracy scores (in %) comparison of different fusion strategies.

From: SpectroFusionNet a CNN approach utilizing spectrogram fusion for electric guitar play recognition

Classifier

\(\:{F}_{early,p}\)

\(\:{F}_{late,max}\)

\(\:{F}_{late,wavg}\)

\(\:{F}_{late,concat}\)

\(\:{S}_{C}+{S}_{G}\)

\(\:{S}_{M}+{S}_{C}\)

\(\:{S}_{M}+{S}_{G}\)

\(\:{S}_{C}+{S}_{G}\)

\(\:{S}_{M}+{S}_{C}\)

\(\:{S}_{M}+{S}_{G}\)

\(\:{S}_{C}+{S}_{G}\)

\(\:{S}_{M}+{S}_{C}\)

\(\:{S}_{M}+{S}_{G}\)

\(\:{S}_{C}+{S}_{G}\)

\(\:{S}_{M}+{S}_{C}\)

\(\:{S}_{M}+{S}_{G}\)

Random Forest

84.76

92.11

89.52

84.21

96.49

96.49

93.86

98.25

99.12

97.14

92

99.05

SVM

74.29

86.84

95.24

84.6

98.62

99.12

97.37

99.12

99.12

96.19

96.19

94.74

KNN

74.29

83.33

85.71

88.2

95.61

95.61

88.6

93.86

98.25

92.38

98.25

99.05

LMT

83.81

92.11

96.19

99.12

99.12

99.12

92.98

99.12

99.12

99.05

99.05

99.12

Naive Bayes

58.10

64.91

66.67

92.64

81.58

79.82

68.42

79.82

79.82

65.71

64.91

75.24

Linear SVM

87.62

94.74

97.14

98.62

99.12

100

96.49

96.49

98.25

99.12

99.05

98.25

MLP

86.67

89.52

95.24

96.49

97.37

99.12

94.74

98.25

99.12

98.10

99.05

99.05

Decision Tree

67.62

65.79

59.05

84.6

85.09

85.96

63.16

85.96

85.09

80.00

83.81

84.21

Gradient Boosting

79.05

87.72

76.19

87.72

89.47

90.35

84.21

95.61

91.23

91.43

93.33

90.35

AdaBoost

30.48

24.56

25.71

58.85

62.28

71.93

79.82

70.18

85.96

34.29

46.67

44.74