Table 7 F1-score (in %) comparison of different fusion strategies.

From: SpectroFusionNet a CNN approach utilizing spectrogram fusion for electric guitar play recognition

Classifier

\(\:{F}_{early,p}\)

\(\:{F}_{late,max}\)

\(\:{F}_{late,wavg}\)

\(\:{F}_{late,concat}\)

\(\:{S}_{C}+{S}_{G}\)

\(\:{S}_{M}+{S}_{C}\)

\(\:{S}_{M}+{S}_{G}\)

\(\:{S}_{C}+{S}_{G}\)

\(\:{S}_{M}+{S}_{C}\)

\(\:{S}_{M}+{S}_{G}\)

\(\:{S}_{C}+{S}_{G}\)

\(\:{S}_{M}+{S}_{C}\)

\(\:{S}_{M}+{S}_{G}\)

\(\:{S}_{C}+{S}_{G}\)

\(\:{S}_{M}+{S}_{C}\)

\(\:{S}_{M}+{S}_{G}\)

Random Forest

85

92

90

84

96

96

94

98

99

97

92

99

SVM

74

87

95

85

99

99

97

99

99

96

96

95

KNN

74

83

86

88

96

96

89

94

98

92

98

99

LMT

84

92

96

99

99

99

93

99

99

99

99

99

Naive Bayes

58

65

67

93

82

80

68

80

80

66

65

75

Linear SVM

88

95

97

99

99

100

96

96

98

99

99

98

MLP

87

90

95

96

97

99

95

98

99

98

99

99

Decision Tree

68

66

59

85

85

86

63

86

85

80

84

84

Gradient Boosting

79

88

76

88

89

90

84

96

91

91

93

90

AdaBoost

30

25

26

59

62

72

80

70

86

34

47

45